Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic dat...Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.展开更多
A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic w...A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions, and other exact excitations like polynomial solutions, exponential solutions, and rational solutions, etc., are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and a generalized cubic nonlinear Klein-Gordon equation.展开更多
With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of no...With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of nonlinear partial differential equations (NPDFs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.展开更多
In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonli...In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.展开更多
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of t...The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.展开更多
The Hirota equation is a higher order extension of the nonlinear Schr6dinger equation by incorporating third order dispersion and one form of self steepening effect, New periodic waves for the discrete Hirota equation...The Hirota equation is a higher order extension of the nonlinear Schr6dinger equation by incorporating third order dispersion and one form of self steepening effect, New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete periodic patterns reproduces the known resulr of the integrable Ablowitz-Ladik system.展开更多
A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equati...A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.展开更多
Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordi...Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordion. In order to study the lateral-torsional buckling of box beams with corrugated steel webs (BBCSW) under the action of bending moment load, the neutral equilibrium equation of BBCSW under the action of bending moment load is derived through the stationary value theory of total potential energy and further, along with taking Kollbrunner-Hajdin correction method and the mechanical properties of the corrugated web into consideration. The analytical calculation formula of lateral-torsional buckling critical bending moment of BBCSW is then obtained. The lateral-torsional buckling critical bending moment of 96 BBCSW test specimens with different geometry dimensions are then calculated using both the analytical calculation method and ANSYS finite element method. The results show that the analytical calculation results agree well with the numerical calculation results using ANSYS, thus proving the accuracy of the analytical calculation method and model simplification hypothesis proposed in this paper. Also, compared with the box beams with flat steel webs (BBFSW) with the same geometry dimensions as BBCSW, within the common range of web space-depth ratio and web span-depth ratio, BBCSW’s lateral-torsional buckling critical bending moment is larger than that of BBFSW. Moreover, the advantages of BBCSW’s stability are even more significant with the increase of web space-depth ratio and web depth-thickness ratio.展开更多
In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a cla...In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.展开更多
In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact so...In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact solutions of the (2+1)-dimensional Breaking soliton equation are derived by using the extended multiple Riccatl equations expansion method.展开更多
With the aid of an improved projective approach and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function s...With the aid of an improved projective approach and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (2+1)-dimensional Korteweg-de Vries system are derived. Usually, in terms of solitary wave solutions and rational function solutions, one can find some important localized excitations. However, based on the derived periodic wave solution in this paper, we find that some novel and significant localized coherent excitations such as dromions, peakons, stochastic fractal patterns, regular fractal patterns, chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.展开更多
The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within...The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ε (≤1) , which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green's integral theorem with the introduction of appropriate Green's function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x -direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately.展开更多
In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°...In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°, 74° and 120° for strike, dip and rake angles of one nodal plane respectively, and 131 °, 33°, 30° for the other nodal plane. The estimated focal depth is about 3kin. Both strikes of the two nodal planes differ significantly to the strike of Susong-Zongyang fault, along which seismic activity has been at a low level since the Late Quaternary. This implies that this earthquake may not have occurred on the Susong-Zongyang fault, and we infer that a buried fault with strike of NNE may be the seismogenic structure of this event.展开更多
This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitra...This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.展开更多
We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy i...We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi- definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.展开更多
To achieve high parallel efficiency for the global MASNUM surface wave model, the algorithm of an irregular quasirectangular domain decomposition and related serializing of calculating points and data exchanging schem...To achieve high parallel efficiency for the global MASNUM surface wave model, the algorithm of an irregular quasirectangular domain decomposition and related serializing of calculating points and data exchanging schemes are developed and conducted, based on the environment of Message Passing Interface(MPI). The new parallel version of the surface wave model is tested for parallel computing on the platform of the Sunway BlueLight supercomputer in the National Supercomputing Center in Jinan. The testing involves four horizontal resolutions, which are 1°×1°,(1/2)°×(1/2)°,(1/4)°×(1/4)°, and(1/8)°×(1/8)°. These tests are performed without data Input/Output(IO) and the maximum amount of processors used in these tests reaches to 131072. The testing results show that the computing speeds of the model with different resolutions are all increased with the increasing of numbers of processors. When the number of processors is four times that of the base processor number, the parallel efficiencies of all resolutions are greater than 80%. When the number of processors is eight times that of the base processor number, the parallel efficiency of tests with resolutions of 1°×1°,(1/2)°×(1/2)° and(1/4)°×(1/4)° is greater than 80%, and it is 62% for the test with a resolution of(1/8)°×(1/8)° using 131072 processors, which is the nearly all processors of Sunway BlueLight. When the processor's number is 24 times that of the base processor number, the parallel efficiencies for tests with resolutions of 1°×1°,(1/2)°×(1/2)°, and(1/4)°×(1/4)° are 72%, 62%, and 38%, respectively. The speedup and parallel efficiency indicate that the irregular quasi-rectangular domain decomposition and serialization schemes lead to high parallel efficiency and good scalability for a global numerical wave model.展开更多
As an advanced generation instrument of earth observation,small footprint full waveform light detection and ranging(LiDAR) technology has been widely used in the past few years.Decomposition and radiative correction i...As an advanced generation instrument of earth observation,small footprint full waveform light detection and ranging(LiDAR) technology has been widely used in the past few years.Decomposition and radiative correction is an important step in waveform data processing,it influences the accuracy of both information extraction and further applications.Based on a stepwise strategy,this study adopts Gaussian mixture model to approximate the LiDAR waveform.In addition to waveform decomposition,a relative correction model is proposed in this paper,the model considers the transmit pulses as well as the different of the travel path for implementing LiDAR waveform relative correction.Validation of the stepwise decomposition and relative correction model are carried out on LiDAR waveform acquired over Zhangye,China.The results indicate that stepwise decomposition identified the number of peaks in LiDAR waveforms,center position and width of each peak well.The relative radiometric correction also improves the similarity of waveforms which acquired at the same target.展开更多
A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the non...A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear φ4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Palnleve test shows the coupled KdV equation possesses Palnleve property. The Backlund transformations of the coupled KdV equation related to Palnleve property and residual symmetry are shown.展开更多
This paper deals with the problem of the bounded traveling wave solutions' shape and the solution to the generalized Whitham-Broer-Kaup equation with the dissipation terms which can be called WBK equation for shor...This paper deals with the problem of the bounded traveling wave solutions' shape and the solution to the generalized Whitham-Broer-Kaup equation with the dissipation terms which can be called WBK equation for short.The authors employ the theory and method of planar dynamical systems to make comprehensive qualitative analyses to the above equation satisfied by the horizontal velocity component u(ξ) in the traveling wave solution (u(ξ),H(ξ)),and then give its global phase portraits.The authors obtain the existent conditions and the number of the solutions by using the relations between the components u(ξ) and H(ξ) in the solutions.The authors study the dissipation effect on the solutions,find out a critical value r*,and prove that the traveling wave solution (u(ξ),H(ξ)) appears as a kink profile solitary wave if the dissipation effect is greater,i.e.,|r| ≥ r*,while it appears as a damped oscillatory wave if the dissipation effect is smaller,i.e.,|r| < r*.Two solitary wave solutions to the WBK equation without dissipation effect is also obtained.Based on the above discussion and according to the evolution relations of orbits corresponding to the component u(ξ) in the global phase portraits,the authors obtain all approximate damped oscillatory solutions (u(ξ),H(ξ)) under various conditions by using the undetermined coefficients method.Finally,the error between the approximate damped oscillatory solution and the exact solution is an infinitesimal decreasing exponentially.展开更多
基金sponsored by the Natural Science Foundation of China(No.41074075)Graduate Innovation Fund by Jilin University(No.20121070)
文摘Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.
文摘A general mapping deformation method is presented and applied to a (2+1)-dimensional Boussinesq system. Many new types of explicit and exact travelling wave solutions, which contain solitary wave solutions, periodic wave solutions, Jacobian and Weierstrass doubly periodic wave solutions, and other exact excitations like polynomial solutions, exponential solutions, and rational solutions, etc., are obtained by a simple algebraic transformation relation between the (2+1)-dimensional Boussinesq equation and a generalized cubic nonlinear Klein-Gordon equation.
基金supported by National Natural Science Foundation of China under Grant No.10771118
文摘With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of nonlinear partial differential equations (NPDFs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.
基金The project supported by National Natural Science Foundation of China under Grant No.40305006the Ministry of Science and Technology of China through Special Public Welfare Project under Grant No.2002DIB20070
文摘In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.
文摘The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.
基金The project partially supported by the Research Grants Council under Grant Nos, HKU 7123/05E and HKU 7184/04E
文摘The Hirota equation is a higher order extension of the nonlinear Schr6dinger equation by incorporating third order dispersion and one form of self steepening effect, New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete periodic patterns reproduces the known resulr of the integrable Ablowitz-Ladik system.
基金Supported by the National Natural Science Foundation of China under Grant No. 60806047the Basic Research of Chongqing Education Committee under Grant No. KJ060813
文摘A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.
基金Projects(51408449,51778630)supported by the National Natural Science Foundation of ChinaProject(2018zzts189)supported by the Fundamental Research Funds for the Central Universities,China
文摘Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordion. In order to study the lateral-torsional buckling of box beams with corrugated steel webs (BBCSW) under the action of bending moment load, the neutral equilibrium equation of BBCSW under the action of bending moment load is derived through the stationary value theory of total potential energy and further, along with taking Kollbrunner-Hajdin correction method and the mechanical properties of the corrugated web into consideration. The analytical calculation formula of lateral-torsional buckling critical bending moment of BBCSW is then obtained. The lateral-torsional buckling critical bending moment of 96 BBCSW test specimens with different geometry dimensions are then calculated using both the analytical calculation method and ANSYS finite element method. The results show that the analytical calculation results agree well with the numerical calculation results using ANSYS, thus proving the accuracy of the analytical calculation method and model simplification hypothesis proposed in this paper. Also, compared with the box beams with flat steel webs (BBFSW) with the same geometry dimensions as BBCSW, within the common range of web space-depth ratio and web span-depth ratio, BBCSW’s lateral-torsional buckling critical bending moment is larger than that of BBFSW. Moreover, the advantages of BBCSW’s stability are even more significant with the increase of web space-depth ratio and web depth-thickness ratio.
文摘In this paper, the Nagumo theorem and the fixed-point theorem are used to prove the existence and the uniqueness and to estimate the asymptotic expansion of the shock solutions of the boundary value problems for a class of quasilinear differential equations, the asymptotic expansion of solution of any orders including boundary is obtained.
基金The project partially supported by National Natural Science Foundation of China under Grant No. 10471143 and the State 973 Project under Grant No. 2004CB318001 The authors are very grateful to Prof. Hong-Bo Li, Yong Chen, Zhen-Ya Yan, and Zhuo-Sheng Lii for their kind help and valuable suggestions. They also thank Prof. En-Gui Fan and Prof. Chun-Ping Liu for their constructive suggestions about the solutions of Riccati equation.
文摘In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact solutions of the (2+1)-dimensional Breaking soliton equation are derived by using the extended multiple Riccatl equations expansion method.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y604106, the Foundation of New Century "151 Talent Engineering" of Zhejiang Province, the Scientific Research Foundation of Key Discipline of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ05005 The authors are in debt to Profs. J.P. Fang, C.Z. Xu, and J.F. Zhang, and Drs. H.P. Zhu, Z.Y. Ma, and W.H. Huang for their fruitful discussions.
文摘With the aid of an improved projective approach and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (2+1)-dimensional Korteweg-de Vries system are derived. Usually, in terms of solitary wave solutions and rational function solutions, one can find some important localized excitations. However, based on the derived periodic wave solution in this paper, we find that some novel and significant localized coherent excitations such as dromions, peakons, stochastic fractal patterns, regular fractal patterns, chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.
基金Partially supported by a research grant from Department of Science and Technology(DST),India(No.SB/FTP/MS-003/2013)
文摘The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ε (≤1) , which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green's integral theorem with the introduction of appropriate Green's function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x -direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately.
基金supported by the China Earthquake Administration as a work Assignment for Seismic Situation Tracing for Earthquake Forecast and Prediction (2011020104)
文摘In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°, 74° and 120° for strike, dip and rake angles of one nodal plane respectively, and 131 °, 33°, 30° for the other nodal plane. The estimated focal depth is about 3kin. Both strikes of the two nodal planes differ significantly to the strike of Susong-Zongyang fault, along which seismic activity has been at a low level since the Late Quaternary. This implies that this earthquake may not have occurred on the Susong-Zongyang fault, and we infer that a buried fault with strike of NNE may be the seismogenic structure of this event.
基金Project supported by the National Natural Science Foundation of China (Nos. 51209052, 51279038, and 51479041), the Natural Sci- ence Foundation of Heilongjiang Province (No. QC2011C013), and the Opening Funds of State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (No. 1307), China
文摘This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.
基金the National Natural Science Foundation of China (No. 61302153)
文摘We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi- definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.
基金supported by National Basic Research Program of China (Grant Nos. 2010CB950300, 2010CB950500)Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105019)+1 种基金Key Supercomputing Science-Technology Project of Shandong Province of China (Grant No. 2011YD01107)Scientific Research Foundation of the First Institute of Oceanography, State Oceanic Administration (Grant No. GY02-2010G22)
文摘To achieve high parallel efficiency for the global MASNUM surface wave model, the algorithm of an irregular quasirectangular domain decomposition and related serializing of calculating points and data exchanging schemes are developed and conducted, based on the environment of Message Passing Interface(MPI). The new parallel version of the surface wave model is tested for parallel computing on the platform of the Sunway BlueLight supercomputer in the National Supercomputing Center in Jinan. The testing involves four horizontal resolutions, which are 1°×1°,(1/2)°×(1/2)°,(1/4)°×(1/4)°, and(1/8)°×(1/8)°. These tests are performed without data Input/Output(IO) and the maximum amount of processors used in these tests reaches to 131072. The testing results show that the computing speeds of the model with different resolutions are all increased with the increasing of numbers of processors. When the number of processors is four times that of the base processor number, the parallel efficiencies of all resolutions are greater than 80%. When the number of processors is eight times that of the base processor number, the parallel efficiency of tests with resolutions of 1°×1°,(1/2)°×(1/2)° and(1/4)°×(1/4)° is greater than 80%, and it is 62% for the test with a resolution of(1/8)°×(1/8)° using 131072 processors, which is the nearly all processors of Sunway BlueLight. When the processor's number is 24 times that of the base processor number, the parallel efficiencies for tests with resolutions of 1°×1°,(1/2)°×(1/2)°, and(1/4)°×(1/4)° are 72%, 62%, and 38%, respectively. The speedup and parallel efficiency indicate that the irregular quasi-rectangular domain decomposition and serialization schemes lead to high parallel efficiency and good scalability for a global numerical wave model.
基金supported by Major State Basic Research Development Program of China(Grant No.2007CB714406)National Key Technology R&D Program of China(Grant No.2008BAC34B03)
文摘As an advanced generation instrument of earth observation,small footprint full waveform light detection and ranging(LiDAR) technology has been widely used in the past few years.Decomposition and radiative correction is an important step in waveform data processing,it influences the accuracy of both information extraction and further applications.Based on a stepwise strategy,this study adopts Gaussian mixture model to approximate the LiDAR waveform.In addition to waveform decomposition,a relative correction model is proposed in this paper,the model considers the transmit pulses as well as the different of the travel path for implementing LiDAR waveform relative correction.Validation of the stepwise decomposition and relative correction model are carried out on LiDAR waveform acquired over Zhangye,China.The results indicate that stepwise decomposition identified the number of peaks in LiDAR waveforms,center position and width of each peak well.The relative radiometric correction also improves the similarity of waveforms which acquired at the same target.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11675084 and 11435005Ningbo Natural Science Foundation under Grant No.2015A610159+1 种基金granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzwl1502sponsored by K.C.Wong Magna Fund in Ningbo University
文摘A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear φ4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Palnleve test shows the coupled KdV equation possesses Palnleve property. The Backlund transformations of the coupled KdV equation related to Palnleve property and residual symmetry are shown.
基金Project supported by the National Natural Science Foundation of China (No.11071164)the Natural Science Foundation of Shanghai (No.10ZR1420800)the Shanghai Leading Academic Discipline Project (No.S30501)
文摘This paper deals with the problem of the bounded traveling wave solutions' shape and the solution to the generalized Whitham-Broer-Kaup equation with the dissipation terms which can be called WBK equation for short.The authors employ the theory and method of planar dynamical systems to make comprehensive qualitative analyses to the above equation satisfied by the horizontal velocity component u(ξ) in the traveling wave solution (u(ξ),H(ξ)),and then give its global phase portraits.The authors obtain the existent conditions and the number of the solutions by using the relations between the components u(ξ) and H(ξ) in the solutions.The authors study the dissipation effect on the solutions,find out a critical value r*,and prove that the traveling wave solution (u(ξ),H(ξ)) appears as a kink profile solitary wave if the dissipation effect is greater,i.e.,|r| ≥ r*,while it appears as a damped oscillatory wave if the dissipation effect is smaller,i.e.,|r| < r*.Two solitary wave solutions to the WBK equation without dissipation effect is also obtained.Based on the above discussion and according to the evolution relations of orbits corresponding to the component u(ξ) in the global phase portraits,the authors obtain all approximate damped oscillatory solutions (u(ξ),H(ξ)) under various conditions by using the undetermined coefficients method.Finally,the error between the approximate damped oscillatory solution and the exact solution is an infinitesimal decreasing exponentially.