Two-dimensional and three-dimensional shock control contour bumps are designed for a supercritical wing section with the aim of transonic wave drag reduction. The supercritical airfoil (NASA SC (02)-0714) is selec...Two-dimensional and three-dimensional shock control contour bumps are designed for a supercritical wing section with the aim of transonic wave drag reduction. The supercritical airfoil (NASA SC (02)-0714) is selected considering the fact that most modern jet transport aircrafts that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. Here it is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which is a key range parameter that can potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height and span are altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump is acquired, an array of bumps is manually placed spanwise of an unswept supercritical wing and analyzed under fully turbulent flow conditions. Different configurations are tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14% drag reduction and a consequent 16% lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yie...A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.展开更多
The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principl...The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.展开更多
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressu...The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.展开更多
UV wavelength auto-tuned tuned output system is realized by the difference method. Controlled by the microprocessor, output wavelength auto- tracking is achieved.Besides, equipment self-checking auto-positioning and t...UV wavelength auto-tuned tuned output system is realized by the difference method. Controlled by the microprocessor, output wavelength auto- tracking is achieved.Besides, equipment self-checking auto-positioning and temperature correct are realized,The wavelength tuned output efficiency in the experiment is better than 97 %.展开更多
Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance sc...Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance scheme is proposed,which assigns dedicated wavelengths to each ingress node,then st-numbering algorithm is used to construct the traffic load balanced spanning trees .In this way,contentioncan be eliminated at ingress nodes,and the amount of bursts that could be accommodated by ingressnodes will be maximized.Further,those unused wavelengths left by traffic load balanced spanning treeare also organized as partial trees to carry bursts,thus the link utilization can be improved effectively.Simulation result shows that our scheme can improve the burst loss performance significantly without thewavelength converters or optical buffers comparing to other popular routing and wavelength assignment(RWA)algorithms.展开更多
A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general...A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.展开更多
Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. De...Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.展开更多
The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, R...The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, RF generator, low-level system, computer system and cavity cooling. The cavity is based on the coaxial resonator type which is short at the terminal with one gap and loaded with domestic ferrite rings. The RF generator is designed in a push-pull mode. The low-level control system is based on PID, DSP, FPGA and DDS9854+USB interface and has three feedback loops. This RF system is designed independently and manufactured domestically. For the first time, it realized the pulse modulation, variable harmonic and CW operational modes. The maximum output power is up to 70 kW and the 10 kV RF voltage is used to capture the irradiative beam and decelerate the beam from 400 to 30 MeV/u.展开更多
文摘Two-dimensional and three-dimensional shock control contour bumps are designed for a supercritical wing section with the aim of transonic wave drag reduction. The supercritical airfoil (NASA SC (02)-0714) is selected considering the fact that most modern jet transport aircrafts that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. Here it is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which is a key range parameter that can potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height and span are altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump is acquired, an array of bumps is manually placed spanwise of an unswept supercritical wing and analyzed under fully turbulent flow conditions. Different configurations are tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14% drag reduction and a consequent 16% lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
文摘A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.
文摘The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.
基金the National Natural Science Foundation of China (NSFC) (50909024)Science Fund of State Key Laboratory of Automotive Safety and Energy (KF10102)+1 种基金Basic Research Foundation of Harbin Engineering University(HEUFT09004)The Cooperation Project in Industry,Education and Research of Ministry of Education of Guangdong Province(2009A090100050)
文摘The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
文摘UV wavelength auto-tuned tuned output system is realized by the difference method. Controlled by the microprocessor, output wavelength auto- tracking is achieved.Besides, equipment self-checking auto-positioning and temperature correct are realized,The wavelength tuned output efficiency in the experiment is better than 97 %.
基金supported by the National Natural Science Foundation of China(No.60572050)the National High Technology Research and Development Programme of China(No.2008AA01Z211)
文摘Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance scheme is proposed,which assigns dedicated wavelengths to each ingress node,then st-numbering algorithm is used to construct the traffic load balanced spanning trees .In this way,contentioncan be eliminated at ingress nodes,and the amount of bursts that could be accommodated by ingressnodes will be maximized.Further,those unused wavelengths left by traffic load balanced spanning treeare also organized as partial trees to carry bursts,thus the link utilization can be improved effectively.Simulation result shows that our scheme can improve the burst loss performance significantly without thewavelength converters or optical buffers comparing to other popular routing and wavelength assignment(RWA)algorithms.
基金Supported by the National High Technology Research and Development Program of China(No.2006AA05Z231)the National Natural Science Foundation of China(No.51177025)
文摘A method of feedforward compensation for electromotive force(EMF) in the single-phase permanent magnet linear generation system and a research in the performance of the single-phase PMLG system are presented.A general mathematical model for the single-phase permanet magnet linear generator(PMLG) system is established and the current loop,voltage loop and the feedforward control are studied based on it for the control system.Then this paper analyses the transfer function of the power system,optimizes current loop and voltage loop parameters by engineering algorithm,and calculates the optimal control parameters.An EMF feedforward compensation method is developed to optimize the control system which improves dynamic performance of the power system but does not affect the steady-state performance.The result of this research verifies the correctness and rationality of the design for the control system.
文摘Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.
文摘The operational frequency range of RF system at HIRFL-CSRe (cooling storage experimental ring) is 0.5-2 MHz, and it works in fundamental and second harmonic. It includes five sections: ferrite ring loaded RF cavity, RF generator, low-level system, computer system and cavity cooling. The cavity is based on the coaxial resonator type which is short at the terminal with one gap and loaded with domestic ferrite rings. The RF generator is designed in a push-pull mode. The low-level control system is based on PID, DSP, FPGA and DDS9854+USB interface and has three feedback loops. This RF system is designed independently and manufactured domestically. For the first time, it realized the pulse modulation, variable harmonic and CW operational modes. The maximum output power is up to 70 kW and the 10 kV RF voltage is used to capture the irradiative beam and decelerate the beam from 400 to 30 MeV/u.