期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算 被引量:45
1
作者 付元元 王纪华 +3 位作者 杨贵军 宋晓宇 徐新刚 冯海宽 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第5期1315-1319,共5页
当作物生物量较大时,现有植被指数由于受饱和问题限制,不能较好的估算作物生物量。针对此问题,尝试将波段深度分析与偏最小二乘回归(partial least square regression,PLSR)结合,提高对大田冬小麦生物量的估算精度,并将两者结合建立的... 当作物生物量较大时,现有植被指数由于受饱和问题限制,不能较好的估算作物生物量。针对此问题,尝试将波段深度分析与偏最小二乘回归(partial least square regression,PLSR)结合,提高对大田冬小麦生物量的估算精度,并将两者结合建立的模型与应用代表性植被指数建立的模型进行生物量估算精度比较。波段深度分析主要对冬小麦冠层光谱550~750nm范围进行,采用波段深度、波段深度比(band depth ratio,BDR)、归一化波段深度指数和归一化面积波段深度对波段深度信息进行表征。在建立的模型中,波段深度分析和PLSR结合的估算精度比应用植被指数模型的精度高,其中BDR与PLSR结合的估算精度最高(R2=0.792,RMSE=0.164kg.m-2)。研究结果表明波段深度分析与PLSR结合能较好的克服生物量较大时存在的饱和问题,提高冬小麦生物量的估算精度。 展开更多
关键词 高光谱遥感 冬小麦 生物量 波段深度分析 偏最小二乘回归
下载PDF
基于波段深度分析和BP神经网络的水稻色素含量高光谱估算 被引量:8
2
作者 郑雯 明金 +2 位作者 杨孟克 周四维 汪善勤 《中国生态农业学报》 CSCD 北大核心 2017年第8期1224-1235,共12页
该文以水稻田间氮肥水平试验为基础,采用单变量的线性和非线性回归方法,建立基于植被指数的水稻色素含量高光谱估算模型。各植被指数对色素含量的估计能力分析结果显示,植被指数在色素含量较大时存在饱和问题,为此尝试将波段深度分析(B... 该文以水稻田间氮肥水平试验为基础,采用单变量的线性和非线性回归方法,建立基于植被指数的水稻色素含量高光谱估算模型。各植被指数对色素含量的估计能力分析结果显示,植被指数在色素含量较大时存在饱和问题,为此尝试将波段深度分析(BDA)与BP神经网络结合,以提高利用高光谱技术对水稻叶片色素含量的估算精度。基于连续统去除处理的水稻冠层高光谱数据(400~750 nm),选取波段深度(BD)、波段深度比(BDR)、归一化波段深度(NBDI)和归一化面积波段指数(BNA)4种波段指数,在此基础上进行主成分分析(PCA)实现降维,然后采用反向传播(BP)神经网络方法对水稻叶片色素含量进行高光谱反演,探讨BDA与BP神经网络结合解决植被指数饱和问题的可能性和有效性。结果表明,波段深度分析突出了光谱吸收特征差异,挖掘了更多的潜在信息,使得光谱曲线的差异性得到增强。BD与BP结合的估算模型对水稻叶片中的类胡萝卜素含量估算精度最高(R^2=0.61,RMSEP=0.128 mg?g^(-1)),BNA与BP结合的估算模型对水稻叶片中的叶绿素含量估算精度最高(R^2=0.73,RMSEP=0.343 mg?g^(-1))。对比分析BDA与BP结合的模型和植被指数最佳回归模型的精度,发现波段深度分析建立的BP神经网络模型能较好地解决饱和问题,提高水稻叶片色素含量的估算精度。 展开更多
关键词 高光谱 水稻 色素 植被指数 波段深度分析 主成分分析 反向传播神经网络
下载PDF
基于光谱吸收深度分析的冬小麦生物量估算模型的建立 被引量:4
3
作者 殷子瑶 刘唐 王震 《北京测绘》 2018年第7期788-793,共6页
准确的估算作物的生物量,对作物长势监测具有重要的意义。利用高光谱仪获取的冬小麦高光谱实测数据,通过植被参数分析、植被光谱吸收特征挖掘,构建了冬小麦生物量的高光谱估算模型。结果表明,基于光谱深度分析与偏最小二乘方法建立的估... 准确的估算作物的生物量,对作物长势监测具有重要的意义。利用高光谱仪获取的冬小麦高光谱实测数据,通过植被参数分析、植被光谱吸收特征挖掘,构建了冬小麦生物量的高光谱估算模型。结果表明,基于光谱深度分析与偏最小二乘方法建立的估算模型的R2值为0.86,RMSE为0.0397kg/m^2,较基于植被参数的生物量估算模型,模型精度得到了大幅的提高。本研究证实了利用光谱深度技术可以准确地挖掘光谱数据的"红谷"波段与生物量之间的关系,从而实现冬小麦生物量估算精度的提高。 展开更多
关键词 高光谱遥感 冬小麦生物量 波段深度分析 偏最小二乘法
下载PDF
水稻叶片氮含量反演偏最小二乘模型设计 被引量:6
4
作者 王奕涵 石铁柱 +2 位作者 刘会增 王俊杰 邬国锋 《遥感信息》 CSCD 北大核心 2015年第6期42-47,共6页
针对高光谱偏最小二乘模型(PLSR)反演作物氮含量时易出现数据冗余和模型复杂的问题,尝试结合波段深度分析和遗传算法(GA)建立水稻氮含量PLSR反演模型。基于去包络线处理的水稻高光谱数据(350nm^750nm),选取波段深度(BD)、波段深度比(BDR... 针对高光谱偏最小二乘模型(PLSR)反演作物氮含量时易出现数据冗余和模型复杂的问题,尝试结合波段深度分析和遗传算法(GA)建立水稻氮含量PLSR反演模型。基于去包络线处理的水稻高光谱数据(350nm^750nm),选取波段深度(BD)、波段深度比(BDR)、归一化面积波段深度(BNA)和归一化面积波段指数(NBDI)4种波段深度指数分别建立BDA-PLSR模型,进而采用遗传算法波段选择选取最适宜波段深度指数建立GA-PLSR模型,并将GA-PLSR模型与BDA-PLSR模型进行对比。结果显示,基于BNA的GA-PLSR模型在反演水稻氮含量中获得了最佳的结果(Adj.R2=0.67,RMSEP=0.20,RPD=1.84)。研究证明,利用波段深度分析建立的PLSR模型能一定程度上解决数据冗余问题,进一步采用遗传算法进行波段选择能更有效挖掘光谱信息,提高模型精度。 展开更多
关键词 水稻 氮含量 偏最小二乘回归 波段深度分析 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部