An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken ...An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.展开更多
The frequencies of sources involved m conventional blended acquisition are the same. Each source transmits the full frequency band, and in general, significant effort is required to successfully produce and operate wi...The frequencies of sources involved m conventional blended acquisition are the same. Each source transmits the full frequency band, and in general, significant effort is required to successfully produce and operate wideband sources. To solve this problem, inhomogeneous blended or decentralized blended acquisition is used, in which the dominant frequency and bandwidth of the source units in a blended array are not equal. When the inhomogeneous and conventional blending acquisitions adopt the same geometry and separation methods, the former has low signal-to-blending noise ratio. Therefore, we present a new separation method for such blended acquisition based on the synchrosqueezed wavelet transform. The proposed method offers better separation quality and decreases the computation time to approximately 1/3.展开更多
Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method w...Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.展开更多
Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic dat...Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.展开更多
In order to achieve higher accuracy in nonlinear/non-Gaussian state estimation, this paper proposes a new unscented Kalman filter (UKF). It uses a deterministic sampling approach. We choose the unscented transformatio...In order to achieve higher accuracy in nonlinear/non-Gaussian state estimation, this paper proposes a new unscented Kalman filter (UKF). It uses a deterministic sampling approach. We choose the unscented transformation (UT) scaling parameters α=0.85, β=2, l=0 to construct 2n + 1 sigma points. These sigma points completely capture the mean and covariance of the Gaussian random variables of the nonlinear system Yi=F(Xi). Simulation results show that the posterior mean and covariance of the sigma points can achieve the accuracy of the third-order Taylor series expansion after having propagated through the true nonlinear system Yi=F(Xi). Extended Kalman filter (EKF) only can achieve the first-order accuracy. The computational complexity of UKF is the same level as that of EKF. UKF can yield better performance and higher accuracy than EKF.展开更多
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2013AA12A201)supported by the National Hi-tech Research and Development Program of China+1 种基金Project(2012ZDP08)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.
基金financially supported by the Major Program National 863 Program of China(No.2014AA06A605)National Nature Science Foundation of China(No.41374115)
文摘The frequencies of sources involved m conventional blended acquisition are the same. Each source transmits the full frequency band, and in general, significant effort is required to successfully produce and operate wideband sources. To solve this problem, inhomogeneous blended or decentralized blended acquisition is used, in which the dominant frequency and bandwidth of the source units in a blended array are not equal. When the inhomogeneous and conventional blending acquisitions adopt the same geometry and separation methods, the former has low signal-to-blending noise ratio. Therefore, we present a new separation method for such blended acquisition based on the synchrosqueezed wavelet transform. The proposed method offers better separation quality and decreases the computation time to approximately 1/3.
基金supported by the National Science and Technology Major Project(No.2011ZX05007-006)the 973 Program of China(No.2013CB228604)the major Project of Petrochina(No.2014B-0610)
文摘Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.
基金sponsored by the Natural Science Foundation of China(No.41074075)Graduate Innovation Fund by Jilin University(No.20121070)
文摘Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.
文摘In order to achieve higher accuracy in nonlinear/non-Gaussian state estimation, this paper proposes a new unscented Kalman filter (UKF). It uses a deterministic sampling approach. We choose the unscented transformation (UT) scaling parameters α=0.85, β=2, l=0 to construct 2n + 1 sigma points. These sigma points completely capture the mean and covariance of the Gaussian random variables of the nonlinear system Yi=F(Xi). Simulation results show that the posterior mean and covariance of the sigma points can achieve the accuracy of the third-order Taylor series expansion after having propagated through the true nonlinear system Yi=F(Xi). Extended Kalman filter (EKF) only can achieve the first-order accuracy. The computational complexity of UKF is the same level as that of EKF. UKF can yield better performance and higher accuracy than EKF.