A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the c...A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.展开更多
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para...In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.展开更多
This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequenc...This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.展开更多
A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992...A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.展开更多
A general multiple-loop feedback approach for realization of Four-Terminal Floating Nullor RC(FTFN-RC) filter is presented.The proposed filter is constructed by multi-output FTFNs, capacitors and resistors.It can simu...A general multiple-loop feedback approach for realization of Four-Terminal Floating Nullor RC(FTFN-RC) filter is presented.The proposed filter is constructed by multi-output FTFNs, capacitors and resistors.It can simultaneously realize slow-pass, band-pass(if order is even number), and high-pass filter responses.With RC elements grounded and requiring no component matching con-straints, it is fully integrated conveniently.Simulations are performed for the fourth-order Butterworth filter to verify the validity of the circuit.展开更多
The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Fin...The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.展开更多
The dynamical-wave routing model of the urban unsteady and non-pressure rain pipe flow was established by conservation of mass, momentum and energy, and it was solved by applying the four point implicit difference met...The dynamical-wave routing model of the urban unsteady and non-pressure rain pipe flow was established by conservation of mass, momentum and energy, and it was solved by applying the four point implicit difference method and the pursuit method. It was obtained from the experiment checking and comparative analysis that the dynamical-wave muting model can reflect influence like attenuate and backwater when flood peak propagate in pipeline with high calculation precision and vast application scope, and it can be applied in routing of urban rain pipe flow of different slopes and inflow conditions. The routing model supplies a scientific foundation for the town rainfall piping design or checking, disaster administration of storm runoff, and so on.展开更多
The authors have proposed the unique ocean wave power station, which is composed of the floating type platform with a pair of floats lining up at the interval of one wave pitch and the power unit where the runners are...The authors have proposed the unique ocean wave power station, which is composed of the floating type platform with a pair of floats lining up at the interval of one wave pitch and the power unit where the runners are submerged at the middle of the platform. Such a profile can make the flow velocity at the runner twice faster than that of OWC (oscillating water column) type constructed adjacent to the seashore. The behavior of the platform in the wave has been reported, and this paper continuously investigates the effects of the runner casing on the runner work and the platform behavior. Besides, the flows around the Wells type, not only single runner but also tandem runners are investigated numerically. It was confirmed that the runner work attenuates the platform amplitude and the runner casing contributes to increase the output. The flow simulation suggests that the tandem runners may be appropriate for the floating type ocean wave power station to get enough output.展开更多
The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microele...The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.展开更多
A fluctuating flow was used to investigate the thermo-fluid characteristic of a regenerative heat exchanger assembly designed, modelled, built and constructed for the used in Stifling engines applications. Vibration o...A fluctuating flow was used to investigate the thermo-fluid characteristic of a regenerative heat exchanger assembly designed, modelled, built and constructed for the used in Stifling engines applications. Vibration of the regenerative heat exchanger assembly was a problem to deal with during the experimental investigation. Hence, a dynamic analysis of the regenerative heat exchanger assembly was undertaken. The main sources of excitation in vibrations of the regenerative heat exchanger assembly were investigated and calculated based initially on the empirical correlations provided in the literature. Thereafter, a mathematical model of the regenerative heat exchanger assembly was developed based on the energy equations for each moving part of the assembly. The kinetic and potential energy equations were formulated for each moving part of the regenerative heat exchanger assembly. From the kinetic and potential equations, the Lag, range operator was defined, and then the Lagrange formulations were used to derive the differential equations representing the dynamic behavior of each moving part of the assembly. The differential equations were integrated to determine the system natural frequencies. These were then compared to the frequency on excitation in vibrations in order to predict the regenerative heat exchanger working conditions despite the existence of vibration in the system.展开更多
Objective To determine whether low power density microwave radiation can induce irreversible changes in rabbit lens epithelial cells (LECs) and the mechanisms of the changes.Methods One eye of each rabbit was exposed ...Objective To determine whether low power density microwave radiation can induce irreversible changes in rabbit lens epithelial cells (LECs) and the mechanisms of the changes.Methods One eye of each rabbit was exposed to 5mW/cm2 or 10mW/cm2 power density microwaves for 3 hours, while the contralateral eye served as a control. Annexin Ⅴ-propidium iodide (PI) two-color flow cytometry (FCM) was used to detect the early changes in rabbit lens epithelial cells after radiation. Results Lots of rabbit LECs were in the initial phase of apoptosis in the 5mW/cm2 microwave radiation group. A large number of cells became secondary necrotic cells, and severe damage could be found in the group exposed to 10mW/cm2 microwave radiation. Conclusion Low power densities of microwave radiation (5mW/cm2 and 10mW/cm2) can induce irreversible damage to rabbit LECs. This may be the non-thermal effect of microwave radiation.展开更多
It is well-known that the celebrated Camassa-Holm equation has the peaked solitary waves,which have been not reported for other mainstream models of shallow water waves.In this letter,the closed-form solutions of peak...It is well-known that the celebrated Camassa-Holm equation has the peaked solitary waves,which have been not reported for other mainstream models of shallow water waves.In this letter,the closed-form solutions of peaked solitary waves of the KdV equation,the BBM equation and the Boussinesq equation are given for the first time.All of them have either a peakon or an anti-peakon.Each of them exactly satisfies the corresponding Rankine-Hogoniot jump condition and could be understood as weak solution.Therefore,the peaked solitary waves might be common for most of shallow water wave models,no matter whether or not they are integrable and/or admit breaking-wave solutions.展开更多
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20100481141,201104567)the Natural Science Foundation of Jiangsu Province(BK2011723)the Planned Projects for Postdoctoral Research Foundation of Jiangsu Province(0902001C)~~
文摘A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.
基金supported by the National Natural Science Foundation of China (Grant number 51776015)
文摘In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.
文摘This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.
文摘A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.
基金Supported by the Hunan Province Project of Education Department of Financial Aid (No.04C346)
文摘A general multiple-loop feedback approach for realization of Four-Terminal Floating Nullor RC(FTFN-RC) filter is presented.The proposed filter is constructed by multi-output FTFNs, capacitors and resistors.It can simultaneously realize slow-pass, band-pass(if order is even number), and high-pass filter responses.With RC elements grounded and requiring no component matching con-straints, it is fully integrated conveniently.Simulations are performed for the fourth-order Butterworth filter to verify the validity of the circuit.
基金supported by the National Natural Science Foundation of China (Grant Numbers. 41276033)the Jiangsu Science and Technology Support Project (Grant Number. BE2014729)+1 种基金the support from Jiangsu Provincial Government through Jiangsu Chair Professorshipthe 2015 Jiangsu Program of Entrepreneurship and Innovation Group
文摘The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.
基金Hunan Provincial Education Department of Key Projects(No.08A019)Funded Projects in Hunan Science and Technology Department(No.2008SK4029)
文摘The dynamical-wave routing model of the urban unsteady and non-pressure rain pipe flow was established by conservation of mass, momentum and energy, and it was solved by applying the four point implicit difference method and the pursuit method. It was obtained from the experiment checking and comparative analysis that the dynamical-wave muting model can reflect influence like attenuate and backwater when flood peak propagate in pipeline with high calculation precision and vast application scope, and it can be applied in routing of urban rain pipe flow of different slopes and inflow conditions. The routing model supplies a scientific foundation for the town rainfall piping design or checking, disaster administration of storm runoff, and so on.
文摘The authors have proposed the unique ocean wave power station, which is composed of the floating type platform with a pair of floats lining up at the interval of one wave pitch and the power unit where the runners are submerged at the middle of the platform. Such a profile can make the flow velocity at the runner twice faster than that of OWC (oscillating water column) type constructed adjacent to the seashore. The behavior of the platform in the wave has been reported, and this paper continuously investigates the effects of the runner casing on the runner work and the platform behavior. Besides, the flows around the Wells type, not only single runner but also tandem runners are investigated numerically. It was confirmed that the runner work attenuates the platform amplitude and the runner casing contributes to increase the output. The flow simulation suggests that the tandem runners may be appropriate for the floating type ocean wave power station to get enough output.
文摘The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.
文摘A fluctuating flow was used to investigate the thermo-fluid characteristic of a regenerative heat exchanger assembly designed, modelled, built and constructed for the used in Stifling engines applications. Vibration of the regenerative heat exchanger assembly was a problem to deal with during the experimental investigation. Hence, a dynamic analysis of the regenerative heat exchanger assembly was undertaken. The main sources of excitation in vibrations of the regenerative heat exchanger assembly were investigated and calculated based initially on the empirical correlations provided in the literature. Thereafter, a mathematical model of the regenerative heat exchanger assembly was developed based on the energy equations for each moving part of the assembly. The kinetic and potential energy equations were formulated for each moving part of the regenerative heat exchanger assembly. From the kinetic and potential equations, the Lag, range operator was defined, and then the Lagrange formulations were used to derive the differential equations representing the dynamic behavior of each moving part of the assembly. The differential equations were integrated to determine the system natural frequencies. These were then compared to the frequency on excitation in vibrations in order to predict the regenerative heat exchanger working conditions despite the existence of vibration in the system.
文摘Objective To determine whether low power density microwave radiation can induce irreversible changes in rabbit lens epithelial cells (LECs) and the mechanisms of the changes.Methods One eye of each rabbit was exposed to 5mW/cm2 or 10mW/cm2 power density microwaves for 3 hours, while the contralateral eye served as a control. Annexin Ⅴ-propidium iodide (PI) two-color flow cytometry (FCM) was used to detect the early changes in rabbit lens epithelial cells after radiation. Results Lots of rabbit LECs were in the initial phase of apoptosis in the 5mW/cm2 microwave radiation group. A large number of cells became secondary necrotic cells, and severe damage could be found in the group exposed to 10mW/cm2 microwave radiation. Conclusion Low power densities of microwave radiation (5mW/cm2 and 10mW/cm2) can induce irreversible damage to rabbit LECs. This may be the non-thermal effect of microwave radiation.
基金supported by the State Key Lab of Ocean Engineering(Grant No.GKZD010056-6)the National Natural Science Foundation of China(Grant Nos.10872129 and 11272209
文摘It is well-known that the celebrated Camassa-Holm equation has the peaked solitary waves,which have been not reported for other mainstream models of shallow water waves.In this letter,the closed-form solutions of peaked solitary waves of the KdV equation,the BBM equation and the Boussinesq equation are given for the first time.All of them have either a peakon or an anti-peakon.Each of them exactly satisfies the corresponding Rankine-Hogoniot jump condition and could be understood as weak solution.Therefore,the peaked solitary waves might be common for most of shallow water wave models,no matter whether or not they are integrable and/or admit breaking-wave solutions.