This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and...This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups proportional to the mean velocity, proportional to the mean strain rate, and proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vortices in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.展开更多
文摘This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups proportional to the mean velocity, proportional to the mean strain rate, and proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vortices in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.