A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of sh...A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.展开更多
基金supported by the National High Technology Development Project of China(Grant No.2002AA639380).
文摘A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.