There is a growing awareness among industry players of reaping the benefits of mobile-cloud convergence by extending today's unmodified cloud to a decentralized two-level cloud-cloudlet architecture based on emerg...There is a growing awareness among industry players of reaping the benefits of mobile-cloud convergence by extending today's unmodified cloud to a decentralized two-level cloud-cloudlet architecture based on emerging mobile-edge computing(MEC) capabilities. In light of future 5G mobile networks moving toward decentralization based on cloudlets, intelligent base stations, and MEC, the inherent distributed processing and storage capabilities of radio-and-fiber(R&F) networks may be exploited for new applications, e.g., cognitive assistance, augmented reality, or cloud robotics. In this paper, we first revisit fiber-wireless(Fi Wi) networks in the context of conventional clouds and emerging cloudlets, thereby highlighting the limitations of conventional radio-overfiber(Ro F) networks such as China Mobile's centralized cloud radio access network(C-RAN) to meet the aforementioned trends. Furthermore, we pay close attention to the specific design challenges of data center networks and revisit our switchless arrayedwaveguide grating(AWG) based network with efficient support of east-west flows and enhanced scalability.展开更多
文摘There is a growing awareness among industry players of reaping the benefits of mobile-cloud convergence by extending today's unmodified cloud to a decentralized two-level cloud-cloudlet architecture based on emerging mobile-edge computing(MEC) capabilities. In light of future 5G mobile networks moving toward decentralization based on cloudlets, intelligent base stations, and MEC, the inherent distributed processing and storage capabilities of radio-and-fiber(R&F) networks may be exploited for new applications, e.g., cognitive assistance, augmented reality, or cloud robotics. In this paper, we first revisit fiber-wireless(Fi Wi) networks in the context of conventional clouds and emerging cloudlets, thereby highlighting the limitations of conventional radio-overfiber(Ro F) networks such as China Mobile's centralized cloud radio access network(C-RAN) to meet the aforementioned trends. Furthermore, we pay close attention to the specific design challenges of data center networks and revisit our switchless arrayedwaveguide grating(AWG) based network with efficient support of east-west flows and enhanced scalability.