Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over...Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over the entire composition range at temperatures 298.15, 303.15 and 308.15 K. From these experimental data, the excess available volume, E a V , excess free volume, E f V , excess isothermal compressibility, E T β , excess thermal expansion coefficient, E α , and excess internal pressure, E i π , are calculated. The variation of these properties with composition and temperature are discussed in terms of molecular interactions between unlike molecules of the mixtures. It is found that the values of E a V , E f V , E T β and E α are positive and those of E i π are negative for all the mixtures at each temperature studied, indicating the presence of weak interactions between 2M2P and AN/PN/BN molecules. The variations of E a V , E f V , E T β , E α and E i π values with composition indicate that the interactions in these mixtures follow the order: AN<PN<BN, i.e., the 2M2P-nitrile interaction decreases with the increase of alkyl chain length in these nitrile molecules. In addition, the theoretical ultrasonic velocity is calculated using the scaled particle theory and compared with the experimental values.展开更多
We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel....We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel.By adjusting the amplitude ratio and the phase difference between the two speakers,a plane traveling sound wave field can be achieved in the test section of the tunnel,which we checked by measuring the amplitudes and phases of the sound pressure along the tunnel and by simultaneously measuring the velocity field of the air flow at three different locations in the tunnel.When a liquid droplet was introduced in the test section,the motion of the droplet and the velocity of the air flow around the droplet were recorded by high speed cameras,from which we analyze and obtain the ratio of the velocity amplitudes and the phase difference between the particle motion and the fluid motion.The experimental data confirm the theoretical result from the wave equations in the long-wavelength regime,i.e.,when the particle size is much smaller than the wavelength.Moreover,we showed that in this regime,the theory on particle motion in an unsteady uniform fluid,when the history term is included,also yields the same results that are in agreement with the experimental data and the wave equation.Our result extends the parameter range over which the theory on particle motion in unsteady fluid is checked against experiments,especially to the range of particle-fluid density ratio that is of important practical applications.展开更多
文摘Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over the entire composition range at temperatures 298.15, 303.15 and 308.15 K. From these experimental data, the excess available volume, E a V , excess free volume, E f V , excess isothermal compressibility, E T β , excess thermal expansion coefficient, E α , and excess internal pressure, E i π , are calculated. The variation of these properties with composition and temperature are discussed in terms of molecular interactions between unlike molecules of the mixtures. It is found that the values of E a V , E f V , E T β and E α are positive and those of E i π are negative for all the mixtures at each temperature studied, indicating the presence of weak interactions between 2M2P and AN/PN/BN molecules. The variations of E a V , E f V , E T β , E α and E i π values with composition indicate that the interactions in these mixtures follow the order: AN<PN<BN, i.e., the 2M2P-nitrile interaction decreases with the increase of alkyl chain length in these nitrile molecules. In addition, the theoretical ultrasonic velocity is calculated using the scaled particle theory and compared with the experimental values.
基金This work was supported partially by the National Natural Science Foundation of China(Grant No.11988102)and by Tsinghua University.
文摘We present an experimental study on the motion of a spherical droplet in a plane traveling sound wave.The experiments were performed in the test section of a tunnel with two loudspeakers at the two ends of the tunnel.By adjusting the amplitude ratio and the phase difference between the two speakers,a plane traveling sound wave field can be achieved in the test section of the tunnel,which we checked by measuring the amplitudes and phases of the sound pressure along the tunnel and by simultaneously measuring the velocity field of the air flow at three different locations in the tunnel.When a liquid droplet was introduced in the test section,the motion of the droplet and the velocity of the air flow around the droplet were recorded by high speed cameras,from which we analyze and obtain the ratio of the velocity amplitudes and the phase difference between the particle motion and the fluid motion.The experimental data confirm the theoretical result from the wave equations in the long-wavelength regime,i.e.,when the particle size is much smaller than the wavelength.Moreover,we showed that in this regime,the theory on particle motion in an unsteady uniform fluid,when the history term is included,also yields the same results that are in agreement with the experimental data and the wave equation.Our result extends the parameter range over which the theory on particle motion in unsteady fluid is checked against experiments,especially to the range of particle-fluid density ratio that is of important practical applications.