Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significa...Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.展开更多
The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF) bands...The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF) bands. However, the spectra discontinuity of the signal gets rise to high range sidelobes when matching the reflected echo, which is much more difficult for targets detection. So it is indispensable to investigate the technique for sidelobes suppression of the range profile when RIS signal is utilized, This paper introduced a new processing technique based on time domain filtering to lower the range sidelobes. A robust and effetive algorithm is adopted to solve the coefficients of the filter, and the restriction on the desired response of the filter is derived. The simulation results show that the peak range sidelobe can be reduced to -27 dB from -9.5 dB while the frequency band span (FBS) is 200 kHz.展开更多
For the detection of underwater target echo under strong interferences,the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature,and the rela...For the detection of underwater target echo under strong interferences,the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature,and the relationship between signal spectral irregularity and target physical properties is theoretically formed.A novel method of broadband underwater target echo detection under reverberation based on the signal spectral irregularity characteristics is proposed.The proposed method has the capability of discriminating between the direct target echo signal from reverberation.Simulation results of complex underwater target broadband acoustic scattering show that the echo can be detected even with the signal to reverberation ratio(SRR)below-10 dB by the proposed method based on the spectral irregularity(SI)feature.The corresponding sea experimental results also show that echo can be detected when the SRR is below 0 dB.The effectiveness and correctness of the proposed method are verified both in simulated data and in real data in sea experiment.展开更多
The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper...The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper. A new application approach of the wavelet packed method to extract the feature of the pulse signal from energy distributing angle is expatiated. It is convenient for the microchip to process and judge by using the wavelet packet analysis method to make the pulse signals quantized and analyzed. Kinds of experiments are simulated in the lab, and the experiments prove that it is a convenient and accurate method to extract the feature of the pulse signal based on wavelet packed-energy spectrumanalysis.展开更多
We numerically study the dynamics of meandering spiral waves in the excitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. Th...We numerically study the dynamics of meandering spiral waves in the excitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. The core location and size radius of the final attractors are computed, and they change with the position of the moving measuring point in a unique way. By the Fourier Spectral analysis, we find the frequency-locked behaviors different from the driving scheme of the external periodic force. It when the moving measuring point approaches closely is also found that the meandering spiral wave can be eliminated the boundary and its feedback gain is large enough. This offers an effective and convenient method for eliminating meandering spiral waves.展开更多
A new method of phase spectral analysis of EEG is proposed for the comparative analysis of phase spectra between normal EEG and epileptic EEG signals based on the wavelet decomposition technique. By using multiscale w...A new method of phase spectral analysis of EEG is proposed for the comparative analysis of phase spectra between normal EEG and epileptic EEG signals based on the wavelet decomposition technique. By using multiscale wavelet decomposition,the original EEGs are mapped to an orthogonal wavelet space,such that the variations of phase can be observed at multiscale. It is found that the phase (and phase difference) spectra of normal EEGs are distinct from that of epileptic EEGs. That is the variations of phase (and phase difference) of normal EEGs have a distinct periodic pattern with the electrical activity proceeds in the brain,but do not the epileptic EEGs. For epileptic EEGs,only at those transient points,the phase variations are obvious. In order to verify these results with the observational data,the phase variations of EEGs in principal component space are observed and found that,the features of phase spectra is in correspondence with that the wavelet space. These results make it possible to view the behavior of EEG rhythms as a dynamic spectrum.展开更多
文摘Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.
文摘The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF) bands. However, the spectra discontinuity of the signal gets rise to high range sidelobes when matching the reflected echo, which is much more difficult for targets detection. So it is indispensable to investigate the technique for sidelobes suppression of the range profile when RIS signal is utilized, This paper introduced a new processing technique based on time domain filtering to lower the range sidelobes. A robust and effetive algorithm is adopted to solve the coefficients of the filter, and the restriction on the desired response of the filter is derived. The simulation results show that the peak range sidelobe can be reduced to -27 dB from -9.5 dB while the frequency band span (FBS) is 200 kHz.
基金The 13th Five-Year Plan for Advanced Research Program(No.41416030301)
文摘For the detection of underwater target echo under strong interferences,the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature,and the relationship between signal spectral irregularity and target physical properties is theoretically formed.A novel method of broadband underwater target echo detection under reverberation based on the signal spectral irregularity characteristics is proposed.The proposed method has the capability of discriminating between the direct target echo signal from reverberation.Simulation results of complex underwater target broadband acoustic scattering show that the echo can be detected even with the signal to reverberation ratio(SRR)below-10 dB by the proposed method based on the spectral irregularity(SI)feature.The corresponding sea experimental results also show that echo can be detected when the SRR is below 0 dB.The effectiveness and correctness of the proposed method are verified both in simulated data and in real data in sea experiment.
文摘The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper. A new application approach of the wavelet packed method to extract the feature of the pulse signal from energy distributing angle is expatiated. It is convenient for the microchip to process and judge by using the wavelet packet analysis method to make the pulse signals quantized and analyzed. Kinds of experiments are simulated in the lab, and the experiments prove that it is a convenient and accurate method to extract the feature of the pulse signal based on wavelet packed-energy spectrumanalysis.
基金Supported by the National Natural Science Foundation of China under Grant No. 11005030Science Foundations of Hebei Education Department under Grant No. 2009135+1 种基金Science Foundations of Inner Mongolia Education Department under Grant No. NJ09178Science Foundation of Hebei Normal University
文摘We numerically study the dynamics of meandering spiral waves in the excitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. The core location and size radius of the final attractors are computed, and they change with the position of the moving measuring point in a unique way. By the Fourier Spectral analysis, we find the frequency-locked behaviors different from the driving scheme of the external periodic force. It when the moving measuring point approaches closely is also found that the meandering spiral wave can be eliminated the boundary and its feedback gain is large enough. This offers an effective and convenient method for eliminating meandering spiral waves.
基金National Natural Science Foundation of China( Grant No.10 2 340 70 )NaturalScience Foundation of Fujian Province of China( Grant No.C0 310 0 2 8)
文摘A new method of phase spectral analysis of EEG is proposed for the comparative analysis of phase spectra between normal EEG and epileptic EEG signals based on the wavelet decomposition technique. By using multiscale wavelet decomposition,the original EEGs are mapped to an orthogonal wavelet space,such that the variations of phase can be observed at multiscale. It is found that the phase (and phase difference) spectra of normal EEGs are distinct from that of epileptic EEGs. That is the variations of phase (and phase difference) of normal EEGs have a distinct periodic pattern with the electrical activity proceeds in the brain,but do not the epileptic EEGs. For epileptic EEGs,only at those transient points,the phase variations are obvious. In order to verify these results with the observational data,the phase variations of EEGs in principal component space are observed and found that,the features of phase spectra is in correspondence with that the wavelet space. These results make it possible to view the behavior of EEG rhythms as a dynamic spectrum.