Few-layer graphenes were fabricated from expandable graphite by rapid microwave exfoliation. Expandable graphite was irradiated in a domestic microwave in full power for 3 min, then soaked in mixed strong hydrogen nit...Few-layer graphenes were fabricated from expandable graphite by rapid microwave exfoliation. Expandable graphite was irradiated in a domestic microwave in full power for 3 min, then soaked in mixed strong hydrogen nitrate and sulfuric acid with volume ratio of 1:1 for 24 h and re-irradiated, thus few-layer graphene sheets were obtained. Specimens gained from every step were selectively characterized by different techniques, such as SEM, XRD, Raman, AFM, XPS, FTIR and combustion elemental analysis. The results show that expandable graphite with loose, porous and worm-like morphology forms instantaneously in microwave irradiation with crackling sound and sparkles, which manifests physical exfoliation of graphene sheets. Few-layer graphene sheets with a dozen or more layers and average thickness of about 4.7 nm are obtained eventually after sequential treatment of microwave irradiation, mixed acid soaking and second microwave irradiation. The as-prepared few-layer graphenes still have high crystallinity and high purity with traces of oxide groups and without serious unrecoverable oxidation damage.展开更多
A high yield xylanase producing strain, A. usamii L336-23, was screened out from its parent strain A.usamii L336 after microwave irradiation. Its productivity of xylanase activity increased by 35.7% from 21000μu·...A high yield xylanase producing strain, A. usamii L336-23, was screened out from its parent strain A.usamii L336 after microwave irradiation. Its productivity of xylanase activity increased by 35.7% from 21000μu·ml-1 to 28500μu·ml-1 and was stable after frequent subcultures and storage for more than two months. The mechanism of microwave mutation was also discussed.展开更多
Factors on degradation of chlorothalonil(CLT) in water by high frequency ultrasonic irradiation were investigated.The effects of initial concentration of chlorothalonil,dosages of tertiary butyl alcohol,humic acid and...Factors on degradation of chlorothalonil(CLT) in water by high frequency ultrasonic irradiation were investigated.The effects of initial concentration of chlorothalonil,dosages of tertiary butyl alcohol,humic acid and initial pH value on degradation of chlorothalonil,as well as the reaction mechanism were studied.The results reveal that chlorothalonil could be effectively degradated by ultrasonic irradiation.The reaction constant value kapp decreased from 0.014 1 to 0.010 2 min-1 with the initial concentration increasing from 50 to 400 μg/L during 180 min irradiation.Tertiary butyl alcohol had negative effect on chlorothalonil degradation,while lower concentration of humic acid promoted the sonolysis,and kapp declined with the further concentration increasing.The kapp varied little when the pH value ranged from 3.10 to 10.28.It may be concluded that mechanical and pyrolysis process played main roles on the degradation of chlorothalonil in ultrasonic irradiation rather than ·OH attack.The electrical energy per order(EEo) values for sonolysis degradation of CLT were also calculated to evaluate the cost of the process.展开更多
The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. ...The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation, carrying with it some of non--magnetic pyrite (unconverted), ferrous sulfate, and troilite, is completely removed from coal after magnetic separation. The opthoum desulfurization efficiency can be attsined by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be disadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.展开更多
We studied precipitation patterns in a Liesegang system under MW (microwave) irradiation in order to investigate metal salt diffusion in an electrolyte gel. The gel and salt concentrations were varied. MW irradiatio...We studied precipitation patterns in a Liesegang system under MW (microwave) irradiation in order to investigate metal salt diffusion in an electrolyte gel. The gel and salt concentrations were varied. MW irradiation induced periodic patterns of precipitation because polar molecules vibrate and rotate in an electromagnetic field. For example, the number of patterns increased by the irradiation. Accordingly, microwave irradiation nonlinearly accelerated the diffusion of ionic molecules.展开更多
Microwave irradiation was employed to assist the synthesis of poly(amino-quinone) (PAQ) from p-benzoquinone and diamines in solid state. The effects of power, time, and pattern (continuously or intermittently) o...Microwave irradiation was employed to assist the synthesis of poly(amino-quinone) (PAQ) from p-benzoquinone and diamines in solid state. The effects of power, time, and pattern (continuously or intermittently) of microwave irradiation on yield and intrinsic viscosity of PAQs were studied. It is shown that the continuous microwave irradiation at a high power leads to rapid increase of yield and a sudden halt in polymerization afterwards, due to the subsequent loss of volatile reactants at a high reaction temperature. Alternatively, the high-power microwave irradiation is applicable to raising the yield if used intermittently. In contras4 the low-power microwave irradiation favours the way of continuous exposure to ensure sufficient heat for polymerization. In both cases of high and low power, the yield and intrinsic viscosity can be further promoted by prolonging the exposure time. It is found that under a preliminarily optimized condition of intermittent irradiation at 490 W with six sequences of 5 min irradiation followed by 5 rain interval, the yield and intrinsic viscosity of PAQ from p-benzoquinone and p-phenylene diamine can reach as high as 83% and 41.9 mL/g, respectively.展开更多
The design of 10MeV/20kW high power irradiating accelerator is presented.The Backward-Traveling-Wave (BTW)accelerating structure is adopted.This structure combines the advantage of traveling-wave accelerator structure...The design of 10MeV/20kW high power irradiating accelerator is presented.The Backward-Traveling-Wave (BTW)accelerating structure is adopted.This structure combines the advantage of traveling-wave accelerator structure with low power reflection and high stability and standing-wave accelerator structure with high shunt impedance.The work frequency of this accelerator is 2856MHz.Designed by Code AccDesign which is coded by ourselves,the output electron beam with final energy 10MeV and peak current 300mA was reached.The length of the accelerating tube is 1.5m,and the power efficiency from microwave to electron beam is 66%.The temperature and stress distribution were simulated.And the frequency shift by microwave loss was calculated.展开更多
基金Project(51274248)supported by the National Natural Science Foundation of China
文摘Few-layer graphenes were fabricated from expandable graphite by rapid microwave exfoliation. Expandable graphite was irradiated in a domestic microwave in full power for 3 min, then soaked in mixed strong hydrogen nitrate and sulfuric acid with volume ratio of 1:1 for 24 h and re-irradiated, thus few-layer graphene sheets were obtained. Specimens gained from every step were selectively characterized by different techniques, such as SEM, XRD, Raman, AFM, XPS, FTIR and combustion elemental analysis. The results show that expandable graphite with loose, porous and worm-like morphology forms instantaneously in microwave irradiation with crackling sound and sparkles, which manifests physical exfoliation of graphene sheets. Few-layer graphene sheets with a dozen or more layers and average thickness of about 4.7 nm are obtained eventually after sequential treatment of microwave irradiation, mixed acid soaking and second microwave irradiation. The as-prepared few-layer graphenes still have high crystallinity and high purity with traces of oxide groups and without serious unrecoverable oxidation damage.
基金Natural Science Foundation of Zhejiang Province(No.395186)
文摘A high yield xylanase producing strain, A. usamii L336-23, was screened out from its parent strain A.usamii L336 after microwave irradiation. Its productivity of xylanase activity increased by 35.7% from 21000μu·ml-1 to 28500μu·ml-1 and was stable after frequent subcultures and storage for more than two months. The mechanism of microwave mutation was also discussed.
基金Project(2008ZX07421-002) supported by the National Major Project of Science & Technology Ministry of ChinaProject(2008AA06A412) supported by the National High Technology Research and Development Program of ChinaProject(20009-K7-4) supported by the Research and Development of Ministry of Housing and Urban-Rural Development of China
文摘Factors on degradation of chlorothalonil(CLT) in water by high frequency ultrasonic irradiation were investigated.The effects of initial concentration of chlorothalonil,dosages of tertiary butyl alcohol,humic acid and initial pH value on degradation of chlorothalonil,as well as the reaction mechanism were studied.The results reveal that chlorothalonil could be effectively degradated by ultrasonic irradiation.The reaction constant value kapp decreased from 0.014 1 to 0.010 2 min-1 with the initial concentration increasing from 50 to 400 μg/L during 180 min irradiation.Tertiary butyl alcohol had negative effect on chlorothalonil degradation,while lower concentration of humic acid promoted the sonolysis,and kapp declined with the further concentration increasing.The kapp varied little when the pH value ranged from 3.10 to 10.28.It may be concluded that mechanical and pyrolysis process played main roles on the degradation of chlorothalonil in ultrasonic irradiation rather than ·OH attack.The electrical energy per order(EEo) values for sonolysis degradation of CLT were also calculated to evaluate the cost of the process.
文摘The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation, carrying with it some of non--magnetic pyrite (unconverted), ferrous sulfate, and troilite, is completely removed from coal after magnetic separation. The opthoum desulfurization efficiency can be attsined by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be disadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.
文摘We studied precipitation patterns in a Liesegang system under MW (microwave) irradiation in order to investigate metal salt diffusion in an electrolyte gel. The gel and salt concentrations were varied. MW irradiation induced periodic patterns of precipitation because polar molecules vibrate and rotate in an electromagnetic field. For example, the number of patterns increased by the irradiation. Accordingly, microwave irradiation nonlinearly accelerated the diffusion of ionic molecules.
基金Project(50804055) supported by the National Natural Science Foundation of China
文摘Microwave irradiation was employed to assist the synthesis of poly(amino-quinone) (PAQ) from p-benzoquinone and diamines in solid state. The effects of power, time, and pattern (continuously or intermittently) of microwave irradiation on yield and intrinsic viscosity of PAQs were studied. It is shown that the continuous microwave irradiation at a high power leads to rapid increase of yield and a sudden halt in polymerization afterwards, due to the subsequent loss of volatile reactants at a high reaction temperature. Alternatively, the high-power microwave irradiation is applicable to raising the yield if used intermittently. In contras4 the low-power microwave irradiation favours the way of continuous exposure to ensure sufficient heat for polymerization. In both cases of high and low power, the yield and intrinsic viscosity can be further promoted by prolonging the exposure time. It is found that under a preliminarily optimized condition of intermittent irradiation at 490 W with six sequences of 5 min irradiation followed by 5 rain interval, the yield and intrinsic viscosity of PAQ from p-benzoquinone and p-phenylene diamine can reach as high as 83% and 41.9 mL/g, respectively.
文摘The design of 10MeV/20kW high power irradiating accelerator is presented.The Backward-Traveling-Wave (BTW)accelerating structure is adopted.This structure combines the advantage of traveling-wave accelerator structure with low power reflection and high stability and standing-wave accelerator structure with high shunt impedance.The work frequency of this accelerator is 2856MHz.Designed by Code AccDesign which is coded by ourselves,the output electron beam with final energy 10MeV and peak current 300mA was reached.The length of the accelerating tube is 1.5m,and the power efficiency from microwave to electron beam is 66%.The temperature and stress distribution were simulated.And the frequency shift by microwave loss was calculated.