Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect...Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.展开更多
The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla...The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.展开更多
To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean s...To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.展开更多
A Direction Of Arrival(DOA) estimator based on the signal separation principle is introduced, and one of representative multidimensional estimators is established by introducing Matrix Operator projection signal steer...A Direction Of Arrival(DOA) estimator based on the signal separation principle is introduced, and one of representative multidimensional estimators is established by introducing Matrix Operator projection signal steering Vector Excision(MOVE) operation. Thanks to Alternating Separation (AS) technique, the multidimensional problem is transformed into a series of one-dimensional optimal ones. Furthermore, an equivalent simplified implementation of the AS is obtained. Finally the definiteness and uniqueness of the estimator are analyzed.展开更多
Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of det...Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of detection.Second-generation wavelet finite element is introduced into the forward modeling of the GPR.As the finite element basis function,the second-generation wavelet scaling function constructed by the scheme is characterized as having multiple scales and resolutions.The function can change the analytical scale arbitrarily according to actual needs.We can adopt a small analysis scale at a large gradient to improve the precision of analysis while adopting a large analytical scale at a small gradient to improve the efficiency of analysis.This approach is beneficial to capture the local mutation characteristics of the solution and improve the resolution without changing mesh subdivision to realize the efficient solution of the forward GPR problem.The algorithm is applied to the numerical simulation of line current radiation source and tunnel non-dense lining model with analytical solutions.Result show that the solution results of the secondgeneration wavelet finite element are in agreement with the analytical solutions and the conventional finite element solutions,thereby verifying the accuracy of the second-generation wavelet finite element algorithm.Furthermore,the second-generation wavelet finite element algorithm can change the analysis scale arbitrarily according to the actual problem without subdividing grids again.The adaptive algorithm is superior to traditional scheme in grid refinement and basis function order increase,which makes this algorithm suitable for solving complex GPR forward-modeling problems with large gradient and singularity.展开更多
The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed...The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.展开更多
The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated u...The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional(2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.展开更多
The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
In this paper, a novel clutter suppression method in Ground Penetrating Radar (GPR) is proposed. Time segments of hill are represented by their corresponding particle in B-scan. Those particles in B-scan are clustered...In this paper, a novel clutter suppression method in Ground Penetrating Radar (GPR) is proposed. Time segments of hill are represented by their corresponding particle in B-scan. Those particles in B-scan are clustered to represent reflectors (such as buried targets, air-soil interface). The clusters of buried target have a particle sequence with single peak. Therefore, if the particles donot belong to the cluster of buried target, time segment they represent will be suppressed. Experimental results and simulation are provided to demonstrate that the new algorithm outperforms existing approaches.展开更多
One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continu...One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.展开更多
This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif...This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif ferent sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coeffi cient is estimated using an ef fective signifi cant wave height(SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coeffi cient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as fi rst guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length(PWL), and peak wave direction(PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR(ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting(ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.展开更多
In the traditional dual-frequency radar ranging system,there is a contradiction between ranging precision and ranging distance.So a tri-frequency ranging method is proposed.The principle of the tri-frequency ranging i...In the traditional dual-frequency radar ranging system,there is a contradiction between ranging precision and ranging distance.So a tri-frequency ranging method is proposed.The principle of the tri-frequency ranging is that the distance can be achieved by transmitting the three frequencies and then measuring the three phase difference and calculating the number of wavelength.What's more,range ambiguity will not occur within a certain distance.The experimental results show that,if the waveband is 0.47 ~0.57 m,the measurement of unambiguous distance of 25 ~500m can be realized.If the wavelength tolerance error is less than ± 10^(-7) and the phase error is less than ± 10^(-3),the precision of the distance ranging can reach 10^(-6).展开更多
Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kau...Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.展开更多
The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit,...The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coetficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BECs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation frequency are also obtained.展开更多
Rain can significantly degrade the wind vector retrieval from Precipitation Radar (PR) by three mechanisms, namely, two-way rain attenuation, rain volume-backscattering, and ocean surface roughening from the rain sp...Rain can significantly degrade the wind vector retrieval from Precipitation Radar (PR) by three mechanisms, namely, two-way rain attenuation, rain volume-backscattering, and ocean surface roughening from the rain splash effect. Here we first derive the radar equation for PR in rainy conditions. Then we use the rain attenuation model for Ku band, volume backscatter model for spherical raindrops and PR-TMI (TRMM Microwave Imager, TMI) matchup datasets from June to August in 2010 to solve the radar equation, and quantitatively analyze the influence of rainfall on PR radar measurement of ocean surface wind speed. Our results show that the significant effect of rain on radar signal is dominated by two-way rain attenuation and rain splash effect, and the effect of rain volume-backscattering is relatively the weakest, which can even be neglected in rain-weak conditions. Moreover, both the two-way rain attenuation and rain splash effect increase with the increasing of integration rain rate and in- cident angle. Last, we combine volume-backscattering effect and splash effect into a simple phenomenological model for rain calibration and select three typhoon cases from June to August in 2012 to verify the accuracy of this model. Before calibration, the mean difference and mean square error (MSE) between PR-observed σ0 and wind-induced σσ are about 2.95 dB and 3.10 dB respectively. However, after calibration, the mean difference and MSE are reduced to 0.64 dB and 1.61 dB respectively. The model yields an accurate calibration for PR near-nadir normalized radar cross section (NRCS) in rainy conditions.展开更多
In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem in...In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM solution.Comparisons with the exact solution and the solution obtained by the Pade approximants and shooting method show the high accuracy,simplicity and efficiency of this method.展开更多
The authors study the Cauchy problem for the semi-linear damped wave equation utt-△u+b(t)ut=f(u),u(0,χ)=u0(χ),ut(0,χ)=u1(χ) in any space dimension n ≥ 1. It is assumed that the time-dependent dampin...The authors study the Cauchy problem for the semi-linear damped wave equation utt-△u+b(t)ut=f(u),u(0,χ)=u0(χ),ut(0,χ)=u1(χ) in any space dimension n ≥ 1. It is assumed that the time-dependent damping term b(t)〉 0 is effective, and in particular tb(t) →∞ as t →∞. The global existence of small energy data solutions for|f(u)|≈|u|^p in the supercritical case of p 〉 1+ 2/n and p ≤n/n-2 for n ≥ 3 is proved.展开更多
This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denois...This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denoising methods, such as Wiener filtering, mean filtering and median filtering. It is found that the proposed denoising method is much more effective for dealing with the waveform signals.展开更多
基金supported by the National Science and Technology Project(Grant No.2012BAK19B04)the Spark Program of Earthquake Sciences,China Earthquake Administration(Grant No.XH12029)
文摘Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971218,61601167,61371169)。
文摘The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.
基金The Social Development Projects of Jiangsu Science and Technology Department(No.BE2018704)the Technological Innovation Projects of Ministry of Public Security of China(No.20170001)。
文摘To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.
基金Partially supported by the National Natural Science Foundation of China(No.60372036), Natural Science Foundation of Shaanxi Province (2002F24) and Funds from the Information Industry Ministry of China (2002XK610039)
文摘A Direction Of Arrival(DOA) estimator based on the signal separation principle is introduced, and one of representative multidimensional estimators is established by introducing Matrix Operator projection signal steering Vector Excision(MOVE) operation. Thanks to Alternating Separation (AS) technique, the multidimensional problem is transformed into a series of one-dimensional optimal ones. Furthermore, an equivalent simplified implementation of the AS is obtained. Finally the definiteness and uniqueness of the estimator are analyzed.
基金supported by the National Natural Science Foundation of China(Nos.41574116 and 41774132)Hunan Provincial Innovation Foundation for Postgraduate(Grant Nos.CX2017B052)the Fundamental Research Funds for the Central Universities of Central South University(Nos.2018zzts693)。
文摘Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of detection.Second-generation wavelet finite element is introduced into the forward modeling of the GPR.As the finite element basis function,the second-generation wavelet scaling function constructed by the scheme is characterized as having multiple scales and resolutions.The function can change the analytical scale arbitrarily according to actual needs.We can adopt a small analysis scale at a large gradient to improve the precision of analysis while adopting a large analytical scale at a small gradient to improve the efficiency of analysis.This approach is beneficial to capture the local mutation characteristics of the solution and improve the resolution without changing mesh subdivision to realize the efficient solution of the forward GPR problem.The algorithm is applied to the numerical simulation of line current radiation source and tunnel non-dense lining model with analytical solutions.Result show that the solution results of the secondgeneration wavelet finite element are in agreement with the analytical solutions and the conventional finite element solutions,thereby verifying the accuracy of the second-generation wavelet finite element algorithm.Furthermore,the second-generation wavelet finite element algorithm can change the analysis scale arbitrarily according to the actual problem without subdividing grids again.The adaptive algorithm is superior to traditional scheme in grid refinement and basis function order increase,which makes this algorithm suitable for solving complex GPR forward-modeling problems with large gradient and singularity.
基金supported by the Open Research Fund of the State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System(No.CEMEE2019Z0104B)。
文摘The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.
基金National Key Research and Development Plan Project(No.2020YFB2010800)National Natural Science Foundation of China(Nos.61971307,61905175,51775377)。
文摘The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional(2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.
基金*Supported by the National Natural Science Foundation of China under Grant No. 40876010, the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08, the R &: D Special Fund for Public Welfare Industry (Meteorology) under Grant No. GYHY200806010, the LASG State Key Laboratory Special Fund and the Foundation of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘The approximate expressions of the travelling wave solutions for a class of nonlinear disturbed long-wave system are constructed using the generalized variational iteration method.
基金Supported by the National Natural Science Foundation of China (No.60501018)
文摘In this paper, a novel clutter suppression method in Ground Penetrating Radar (GPR) is proposed. Time segments of hill are represented by their corresponding particle in B-scan. Those particles in B-scan are clustered to represent reflectors (such as buried targets, air-soil interface). The clusters of buried target have a particle sequence with single peak. Therefore, if the particles donot belong to the cluster of buried target, time segment they represent will be suppressed. Experimental results and simulation are provided to demonstrate that the new algorithm outperforms existing approaches.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX-YW-12-04)the National Natural Science Foundation of China (No. 41030855)+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09A403)the Marine Public Welfare Project of China (No. 201105032)
文摘One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Science Foundation for Young Scientists of China(Nos.41306191,41306192,41321004,41406203)the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China(No.JG1317)
文摘This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif ferent sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coeffi cient is estimated using an ef fective signifi cant wave height(SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coeffi cient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as fi rst guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length(PWL), and peak wave direction(PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR(ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting(ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
基金Supported by the National Natural Science Foundation of China(No.61107052)the National Natural Science Foundation of Tianjing(No.11JCYBJC00100)
文摘In the traditional dual-frequency radar ranging system,there is a contradiction between ranging precision and ranging distance.So a tri-frequency ranging method is proposed.The principle of the tri-frequency ranging is that the distance can be achieved by transmitting the three frequencies and then measuring the three phase difference and calculating the number of wavelength.What's more,range ambiguity will not occur within a certain distance.The experimental results show that,if the waveband is 0.47 ~0.57 m,the measurement of unambiguous distance of 25 ~500m can be realized.If the wavelength tolerance error is less than ± 10^(-7) and the phase error is less than ± 10^(-3),the precision of the distance ranging can reach 10^(-6).
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006,Chinese Ministry of Education
文摘Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10774120 and 10975114the Natural Science Foundation of Gansu Province under Grant No.1010RJZA012Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-48
文摘The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coetficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BECs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation frequency are also obtained.
基金supported by National Natural Science Foundation of China(Grant No.11101421)State Oceanic Administration(Grant No.Y1H0810034)the Special Foundation for Young Scientists of Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(Grant No.Y1S01500CX)
文摘Rain can significantly degrade the wind vector retrieval from Precipitation Radar (PR) by three mechanisms, namely, two-way rain attenuation, rain volume-backscattering, and ocean surface roughening from the rain splash effect. Here we first derive the radar equation for PR in rainy conditions. Then we use the rain attenuation model for Ku band, volume backscatter model for spherical raindrops and PR-TMI (TRMM Microwave Imager, TMI) matchup datasets from June to August in 2010 to solve the radar equation, and quantitatively analyze the influence of rainfall on PR radar measurement of ocean surface wind speed. Our results show that the significant effect of rain on radar signal is dominated by two-way rain attenuation and rain splash effect, and the effect of rain volume-backscattering is relatively the weakest, which can even be neglected in rain-weak conditions. Moreover, both the two-way rain attenuation and rain splash effect increase with the increasing of integration rain rate and in- cident angle. Last, we combine volume-backscattering effect and splash effect into a simple phenomenological model for rain calibration and select three typhoon cases from June to August in 2012 to verify the accuracy of this model. Before calibration, the mean difference and mean square error (MSE) between PR-observed σ0 and wind-induced σσ are about 2.95 dB and 3.10 dB respectively. However, after calibration, the mean difference and MSE are reduced to 0.64 dB and 1.61 dB respectively. The model yields an accurate calibration for PR near-nadir normalized radar cross section (NRCS) in rainy conditions.
文摘In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM solution.Comparisons with the exact solution and the solution obtained by the Pade approximants and shooting method show the high accuracy,simplicity and efficiency of this method.
基金Project supported by a grant of DFG (Deutsche Forschungsgemeinschaft) for the research project "Influence of time-dependent coefficients on semi-linear wave models" (No. RE 961/17-1)
文摘The authors study the Cauchy problem for the semi-linear damped wave equation utt-△u+b(t)ut=f(u),u(0,χ)=u0(χ),ut(0,χ)=u1(χ) in any space dimension n ≥ 1. It is assumed that the time-dependent damping term b(t)〉 0 is effective, and in particular tb(t) →∞ as t →∞. The global existence of small energy data solutions for|f(u)|≈|u|^p in the supercritical case of p 〉 1+ 2/n and p ≤n/n-2 for n ≥ 3 is proved.
基金supported by the National Natural Science Foundation of China(No.11004042)the National Key Scientific Instrument and Equipment Development Projects(No.2012YQ040164)the Science Funds of Heilongjiang Province(No.F2016015)
文摘This paper describes a full waveform sampling LiDAR system applying stripe principle. A kind of denoising method based on edge detection of original stripe signal is proposed. This method is compared with other denoising methods, such as Wiener filtering, mean filtering and median filtering. It is found that the proposed denoising method is much more effective for dealing with the waveform signals.