期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
液体—固体分界面处斯通利波的波速方程 被引量:2
1
作者 卓乐芳 《西安工程学院学报》 2003年第1期76-78,共3页
 推导出液体—固体分界面处斯通利波波速方程的几种不同表达式,并对结果进行了简单讨论。
关键词 面波 斯通利波 位移势函数 波速方程
下载PDF
关于声表面波波速的几点注记
2
作者 王其申 《首都师范大学学报(自然科学版)》 2001年第4期31-33,共3页
本文深入讨论了固体中声表面波波速方程的实根分布规律 。
关键词 声表面波 波速方程 实根 固体媒质 传播方式 速度势函数 泊松比
下载PDF
Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme 被引量:7
3
作者 杜启振 李宾 侯波 《Applied Geophysics》 SCIE CSCD 2009年第1期42-49,103,共9页
To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order vel... To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme. 展开更多
关键词 transversely isotropic medium compact staggered-grid the first-order velocitystress wave equations numerical dispersion wave field simulation
下载PDF
Automatically positioning microseismic sources in mining by the stereo tomographic method using full wavefields 被引量:3
4
作者 缪华祥 姜福兴 +3 位作者 宋雪娟 宋建勇 杨淑华 焦俊如 《Applied Geophysics》 SCIE CSCD 2012年第2期168-176,234,235,共11页
For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of micros... For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events. 展开更多
关键词 microseismic full wavefields wavefield mode identification tomographic image source parameters automatic positioning
下载PDF
Scholte wave dispersion and particle motion mode in ocean and ocean crust 被引量:1
5
作者 Xu Xin Wan Yong-Ge +1 位作者 Li Zhen-Yue Sheng Shu-Zhong 《Applied Geophysics》 SCIE CSCD 2022年第1期132-142,146,共12页
The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equa... The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equation.The displacement expressions of the Scholte waves in liquid and solid were derived.Additionally,the mode of motion of Scholte waves in liquid and solid and their variation with depth was studied.The following results were obtained:The dispersion equation shows that the propagation velocity of the fundamental Scholte wave was greater than the P-wave in liquid and less than that of the Scholte wave in homogeneous elastic half-space.In contrast,the velocity of higher-order Scholte waves was greater than that of P waves in liquid and S-waves in solid.Only the fundamental Scholte wave has no cutoff frequency.The Scholte wave at the liquid surface moved only vertically,while the particles inside the liquid medium moved elliptically.The amplitude variation with depth in the solid medium caused the particle motion to change from a retrograde ellipse to a prograde ellipse.The above results imply the study of Scholte waves in the ocean and oceanic crust and help estimate ocean depths. 展开更多
关键词 Scholte waves in the ocean and oceanic crust dispersion equation propagation velocity amplitude mode of motion
下载PDF
A Novel and Fast Model of Erbium-doped Fiber Amplifiers 被引量:4
6
作者 ZHUZhi-peng JIANGFeng-xian 《Semiconductor Photonics and Technology》 CAS 2000年第1期1-7,共7页
A novel and fast model of erbium-doped fiber amplifiers (EDFAs) is presented. By calculating a typical EDFA, numerical results are compared with the results obtained by spectral-solved method. The results of compariso... A novel and fast model of erbium-doped fiber amplifiers (EDFAs) is presented. By calculating a typical EDFA, numerical results are compared with the results obtained by spectral-solved method. The results of comparison show that such a model can improve the computational speed and preserve the precision. Some characteristics of the EDFA are then analyzed using this model. The results are consistent with those of the experiments. 展开更多
关键词 Erbium-doped fiber amplifier Rate equation Optical communications
下载PDF
Highly nonlinear internal solitary waves over the continental shelf of the northwestern South China Sea 被引量:11
7
作者 徐振华 尹宝树 侯一筠 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第5期1049-1054,共6页
Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continent... Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea(19°35'N,112°E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors,and an acoustic Doppler current profiler(ADCP).We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories.Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width.Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries(KdV) theory than the first-order KdV model.These results indicate that the northwestern South China Sea(SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea. 展开更多
关键词 internal solitary wave high nonlinearity South China Sea (SCS)
下载PDF
RAPID EXACT CONTROLLABILITY OF THE WAVE EQUATION BY CONTROLS DISTRIBUTED ON A TIME-VARIANT SUBDOMAIN 被引量:1
8
作者 LIUKANGSHENG YONGJIONGMIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1999年第1期65-76,共12页
Consider the wave equation with distributed controls supported on a subdomain, calledcontrol subdomain, which is allowed to be variant in time. For any prescribed time duration,the authors work out a scheme for changi... Consider the wave equation with distributed controls supported on a subdomain, calledcontrol subdomain, which is allowed to be variant in time. For any prescribed time duration,the authors work out a scheme for changing the control subdomain such that the wave equationis exactly controllable on this time duration, where the control subdomain at any time is allowedto have arbitrarily small measure and relatively simple shape. 展开更多
关键词 Rapid exact controllability Wave equation Control subdomain Unique continuation
原文传递
Shock Wave in Supersonic Moist Air Jet for a Low Pressure Ratio 被引量:1
9
作者 Yumiko OTOBE Hideo KASHIMURA Toshiaki SETOGUCHI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第4期289-293,共5页
In the present study,a computational fluid dynamics work was performed to investigate the occurrence of the shock wave by condensation in supersonic moist air jet.The unsteady,compressible axisymmetric Navier-Stokes e... In the present study,a computational fluid dynamics work was performed to investigate the occurrence of the shock wave by condensation in supersonic moist air jet.The unsteady,compressible axisymmetric Navier-Stokes equation is solved by TVD(Total Variation Diminishing) scheme in this study.The numerical simulations have been performed for low pressure ratio and various humidities.The results show the occurrence of the shock wave in supersonic moist air jet for a low pressure ratio when Mach disk does not occur,depending on humidity of the air. 展开更多
关键词 compressible flow axisymmetric flow shock wave CONDENSATION humidity
原文传递
Velocity field of wave-induced local fluid flow in double-porosity media 被引量:4
10
作者 BA Jing ZHANG Lin +1 位作者 SUN WeiTao HAO ZhaoBing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第6期1020-1030,共11页
Under the excitation of elastic waves,local fluid flow in a complex porous medium is a major cause for wave dispersion and attenuation.When the local fluid flow process is simulated with wave propagation equations in ... Under the excitation of elastic waves,local fluid flow in a complex porous medium is a major cause for wave dispersion and attenuation.When the local fluid flow process is simulated with wave propagation equations in the double-porosity medium,two porous skeletons are usually assumed,namely,host and inclusions.Of them,the volume ratio of inclusion skeletons is low.All previous studies have ignored the consideration of local fluid flow velocity field in inclusions,and therefore they can not completely describe the physical process of local flow oscillation and should not be applied to the situation where the fluid kinetic energy in inclusions cannot be neglected.In this paper,we analyze the local fluid flow velocity fields inside and outside the inclusion,rewrite the kinetic energy function and dissipation function based on the double-porosity medium model containing spherical inclusions,and derive the reformulated Biot-Rayleigh(BR)equations of elastic wave propagation based on Hamilton’s principle.We present simulation examples with different rock and fluid types.Comparisons between BR equations and reformulated BR equations show that there are significant differences in wave response characteristics.Finally,we compare the reformulated BR equations with the previous theories and experimental data,and the results show that the theoretical results of this paper are correct and effective. 展开更多
关键词 double-porosity medium elastic wave propagation local fluid flow velocity dispersion Biot-Rayleigh equations petro-physical experiment
原文传递
A unified theory for gas dynamics and aeroacoustics in viscous compressible flows.Part I.Unbounded fluid 被引量:1
11
作者 Feng Mao Linlin Kang +1 位作者 Luoqin Liu Jiezhi Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第7期65-79,I0002,共16页
This paper presents a deep reflection on the advective wave equations for velocity vector and dilatation discovered in the past decade.We show that these equations can form the theoretical basis of modern gas dynamics... This paper presents a deep reflection on the advective wave equations for velocity vector and dilatation discovered in the past decade.We show that these equations can form the theoretical basis of modern gas dynamics,because they dominate not only various complex viscous and heat-conducting gas flows but also their associated longitudinal waves,including aero-generated sound.Current aeroacoustics theory has been developing in a manner quite independently of gas dynamics;it is based on the advective wave equations for thermodynamic variables,say the exact Phillips equation of relative disturbance pressure as a representative one.However,these equations do not cover the fluid flow that generates and propagates sound waves.In using them,one has to assume simplified base-flow models,which we argue is the main theoretical obstacle to identifying sound source and achieving effective noise control.Instead,we show that the Phillips equation and alike is nothing but the first integral of the dilatation equation that also governs the longitudinal part of the flow field.Therefore,we conclude that modern aeroacoustics should merge back into the general unsteady gas dynamics as a special branch of it,with dilatation of multiple sources being a new additional and sharper sound variable. 展开更多
关键词 Gas dynamics-aeroacoustics viscous compressible flow Advective wave equations Thermodynamic variables DILATATION Process splitting and coupling
原文传递
Improved Speed and Shape of Ion-Acoustic Waves in a Warm Plasma
12
作者 H.G.Abdelwahed E.K.El-Shewy 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第10期445-452,共8页
The basic set of fluid equations can be reduced to the nonlinear Kortewege-de Vries(KdV)and nonlinear Schro¨dinger(NLS)equations.The rational solutions for the two equations has been obtained.The exact amplitude ... The basic set of fluid equations can be reduced to the nonlinear Kortewege-de Vries(KdV)and nonlinear Schro¨dinger(NLS)equations.The rational solutions for the two equations has been obtained.The exact amplitude of the nonlinear ion-acoustic solitary wave can be obtained directly without resorting to any successive approximation techniques by a direct analysis of the given field equations.The Sagdeev’s potential is obtained in terms of ion acoustic velocity by simply solving an algebraic equation.The soliton and double layer solutions are obtained as a small amplitude approximation.A comparison between the exact soliton solution and that obtained from the reductive perturbation theory are also discussed. 展开更多
关键词 field equations Sagdeev potential SOLITONS nonlinear waves shock waves nonlinear SchrSdinger(NLS) equation
原文传递
Jacobian matrix for the inversion of P-and S-wave velocities and its accurate computation method 被引量:2
13
作者 LIU FuPing MENG XianJun +2 位作者 WANG YuMei SHEN GuoQiang YANG ChangChun 《Science China Earth Sciences》 SCIE EI CAS 2011年第5期647-654,共8页
The optimization inversion method based on derivatives is an important inversion technique in seismic data processing,where the key problem is how to compute the Jacobian matrix.The computation precision of the Jacobi... The optimization inversion method based on derivatives is an important inversion technique in seismic data processing,where the key problem is how to compute the Jacobian matrix.The computation precision of the Jacobian matrix directly influences the success of the optimization inversion method.Currently,all AVO(Amplitude Versus Offset) inversion techniques are based on approximate expressions of Zoeppritz equations to obtain derivatives.As a result,the computation precision and application range of these AVO inversions are restricted undesirably.In order to improve the computation precision and to extend the application range of AVO inversions,the partial derivative equation(Jacobian matrix equation(JME) for the P-and S-wave velocities inversion) is established with Zoeppritz equations,and the derivatives of each matrix entry with respect to Pand S-wave velocities are derived.By solving the JME,we obtain the partial derivatives of the seismic wave reflection coefficients(RCs) with respect to P-and S-wave velocities,respectively,which are then used to invert for P-and S-wave velocities.To better understand the behavior of the new method,we plot partial derivatives of the seismic wave reflection coefficients,analyze the characteristics of these curves,and present new understandings for the derivatives acquired from in-depth analysis.Because only a linear system of equations is solved in our method,the computation of Jacobian matrix is not only of high precision but also is fast and efficient.Finally,the theoretical foundation is established so that we can further study inversion problems involving layered structures(including those with large incident angle) and can further improve computational speed and precision. 展开更多
关键词 Jacobian matrix Zoeppritz equations inversion of velocities derivatives of RCs with respect to P- and S-wave velocities large angle
原文传递
Solutions to Forced and Unforced Lin–Reissner–Tsien Equations for Transonic Gas Flows on Various Length Scales
14
作者 Kyle A.Theaker Robert A.Van Gorder 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第3期309-316,共8页
The Lin–Reissner–Tsien equation is useful for studying transonic gas flows, and has appeared in both forced and unforced forms in the literature. Defining arbitrary spatial scalings, we are able to obtain a family o... The Lin–Reissner–Tsien equation is useful for studying transonic gas flows, and has appeared in both forced and unforced forms in the literature. Defining arbitrary spatial scalings, we are able to obtain a family of exact similarity solutions depending on one free parameter in addition to the model parameter holding the scalings. Numerical solutions compare favorably with the exact solutions in regions where the exact solutions are valid. Mixed wave-similarity solutions, which describe wave propagation in one variable and self-similar scaling of the entire solution, are also given,and we show that such solutions can only exist when the wave propagation is sufficiently slow. We also extend the Lin–Reissner–Tsien equation to have a forcing term, as such equations have entered the physics literature recently. We obtain both wave and self-similar solutions for the forced equations, and we are able to give conditions under which the force function allows for exact solutions. We then demonstrate how to obtain these exact solutions in both the traveling wave and self-similar cases. There results constitute new and potentially physically interesting exact solutions of the Lin–Reissner–Tsien equation and in particular suggest that the forced Lin–Reissner–Tsien equation warrants further study. 展开更多
关键词 Lin-Reissner-Tsien equation similarity transform nonlinear waves exact solutions
原文传递
Hugoniot equation of state of olivine and its geodynamic implications
15
作者 HUANG Xiao Ge YUAN Xian Hao +2 位作者 CHEN Zu An LIU Fu Sheng BAI Wu Ming 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期619-625,共7页
Large olivine samples were hot-pressed synthesized for shock wave experiments. The shock wave experiments were carried out at pressure range between 11 and 42 GPa. Shock data on olivine sample yielded a linear relatio... Large olivine samples were hot-pressed synthesized for shock wave experiments. The shock wave experiments were carried out at pressure range between 11 and 42 GPa. Shock data on olivine sample yielded a linear relationship between shock wave velocity D and particle velocity u described by D=3.56(?0.13)+2.57(?0.12)u. The shock temperature is determined by an energy relationship which is approximately 790°C at pressure 28 GPa. Due to low temperature and short experimental duration, we suggest that no phase change occurred in our sample below 30 GPa and olivine persisted well beyond its equilibrium boundary in metastable phase. The densities of metastable olivine are in agreement with the results of static compression. At the depth shallower than 410 km, the densities of metastable olivine are higher than those of the PREM model, facilitating cold slab to sink into the mantle transition zone. However, in entire mantle transition zone, the shock densities are lower than those of the PREM model, hampering cold slab to flow across the "660 km" phase boundary. 展开更多
关键词 Hugonite density Shock temperature Olivine Mantle transition zone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部