Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of...Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.展开更多
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par...In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.展开更多
By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis...By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.展开更多
Acoustic velocity varies in deep-water environments.To obtain accurate inversion interpretations,it is necessary to develop a horizontally layered seawater–seabed(HLSS)model with continuously varying velocities.In th...Acoustic velocity varies in deep-water environments.To obtain accurate inversion interpretations,it is necessary to develop a horizontally layered seawater–seabed(HLSS)model with continuously varying velocities.In this work,we used an HLSS model based on wave theory to deduce the Scholte wave dispersion equations and established an HLSS model based on the acoustic velocity profile and the submarine medium parameters of the South China Sea.We studied the dispersion characteristics of Scholte waves and theoretically calculated the amplitude–depth distribution.We also examined the influence of deep-water environments on the dispersion characteristics of Scholte waves.Using the real geological parameters of the Dongsha Islands in the South China Sea,we exploited the spectral element method to simulate seismic wave propagation in the fluid–solid interface and extracted the Scholte wave dispersion curves using multichannel analysis of surface waves(MASW).The consistent theoretical and extracted dispersion curve results verified the accuracy of our method.Numerical experiments showed that the dispersion characteristics of Scholte waves in deep water are weaker than those in shallow water.In addition to the seawater depth and the physical parameters of seabed sediments,the seawater’s variable velocity also influences Scholte wave dispersion characteristics.展开更多
This study presents observation and detailed analysis on the double layers (DLs) in the ramp and the foreshock contacting with the foot of the terrestrial bow shock by THEMIS on September 14, 2008 under enhanced dyn...This study presents observation and detailed analysis on the double layers (DLs) in the ramp and the foreshock contacting with the foot of the terrestrial bow shock by THEMIS on September 14, 2008 under enhanced dynamic pressure in the solar wind. The results reveal that: (1) The time duration of the double layers is nus 10-40 mV/m. (2) On assuming a propagation speed at the ion mainly 3-8 ms, and their max parallel electric field is miacoustic speed (vs), their spatial scale is estimated to be 0.3-1.15 km (about 75-200 2D). (3) The net potential drop of DLs is estimated to be 5-32 V. (4) The DLs in the ramp and the foreshock contacting to the foot of the bow shock is current-carrying as a result of development and evolution of nonlinear phase of instability in the self-consistent current-carrying plasma. The DLs may play an important role in strong turbulence in the foreshock contacting with the foot of the bow shock.展开更多
An analytical method is developed for the hydroelastic interaction between surface incident waves and a thin elastic plate of arbitrary geometry floating on an inviscid fluid of finite depth in the framework of linear...An analytical method is developed for the hydroelastic interaction between surface incident waves and a thin elastic plate of arbitrary geometry floating on an inviscid fluid of finite depth in the framework of linear potential flow.Three kinds of edge conditions are considered and the corresponding analytical representations are derived in the polar coordinate system.According to the surface boundary conditions,the fluid domain is divided into two regions,namely,an open water region and a plate-covered region.With the assumption that all the motion is time-harmonic,the series solutions for the spatial velocity potentials are derived by the method of eigenfunction expansion.The matching conditions for the continuities of the velocity and pressure are transformed by taking the inner products successively with respect to the vertical eigenfunction for the free surface and the angular eigenfunction.A system of simultaneous equations,including two edge conditions and two matching conditions,is set up for deriving the expansion coefficients.As an example,numerical computation for the expansion coefficients of truncated series is performed for an elliptic plate.The results show that the method suggested here is useful to revealing the physical features of the gravity wave scattering in the open water and the hydroelastic response in the plate.展开更多
The nonlinear evolution of a finite-amplitude disturbance in a 3-D supersonic boundary layer over a cone was investigated recently by Liu et al. using direct numerical simulation (DNS). It was found that certain sma...The nonlinear evolution of a finite-amplitude disturbance in a 3-D supersonic boundary layer over a cone was investigated recently by Liu et al. using direct numerical simulation (DNS). It was found that certain small-scale 3-D disturbances amplified rapidly. These disturbances exhibit the characteristics of second modes, and the most amplified components have a well- defined spanwise wavelength, indicating a clear selectivity of the amplification. In the case of a cone, the three-dimensionality of the base flow and the disturbances themselves may be responsible for the rapid amplification. In order to ascertain which of these two effects are essential, in this study we carried out DNS of the nonlinear evolution of a spanwise localized disturbance (wavepacket) in a flat-plate boundary layer. A similar amplification of small-scale disturbances was observed, suggesting that the direct reason for the rapid amplification is the three-dimensionality of the disturbances rather than the three-dimensional nature of the base flow, even though the latter does alter the spanwise distribution of the disturbance. The rapid growth of 3-D waves may be attributed to the secondary instability mechanism. Further simulations were performed for a wavepacket of first modes in a supersonic boundary layer and of Tollmien-Schlichting (T-S) waves in an incompressible boundary layer. The re- suits show that the amplifying components are in the band centered at zero spanwise wavenumber rather than at a finite spanwise wavenumber. It is therefore concluded that the rapid growth of 3-D disturbances in a band centered at a preferred large spanwise wavenumber is the main characteristic of nonlinear evolution of second mode disturbances in supersonic boundary layers.展开更多
基金sponsored by the National Key Technology R&D Program for the 12th five-year plan(No.2011ZX05020-008)the China National Petroleum Corporation Logging Basic Research Project(No.2014A-3910)
文摘Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.
基金supported by the Research Project of Tianjin Earthquake Agency(No.yb201901)Seismic Regime Tracking Project of CEA(No.2019010127)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(No.3JH-201901006)
文摘In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.
基金Projects(51774138,51804122,51904105)supported by the National Natural Science Foundation of ChinaProjects(E2021209148,E2021209052)supported by the Natural Science Foundation of Hebei Province,China。
文摘By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.
基金funded by the National Natural Science Foundation of China (grant no.42074149)the Natural Science Foundation of Jiangsu Province (BK20201318).
文摘Acoustic velocity varies in deep-water environments.To obtain accurate inversion interpretations,it is necessary to develop a horizontally layered seawater–seabed(HLSS)model with continuously varying velocities.In this work,we used an HLSS model based on wave theory to deduce the Scholte wave dispersion equations and established an HLSS model based on the acoustic velocity profile and the submarine medium parameters of the South China Sea.We studied the dispersion characteristics of Scholte waves and theoretically calculated the amplitude–depth distribution.We also examined the influence of deep-water environments on the dispersion characteristics of Scholte waves.Using the real geological parameters of the Dongsha Islands in the South China Sea,we exploited the spectral element method to simulate seismic wave propagation in the fluid–solid interface and extracted the Scholte wave dispersion curves using multichannel analysis of surface waves(MASW).The consistent theoretical and extracted dispersion curve results verified the accuracy of our method.Numerical experiments showed that the dispersion characteristics of Scholte waves in deep water are weaker than those in shallow water.In addition to the seawater depth and the physical parameters of seabed sediments,the seawater’s variable velocity also influences Scholte wave dispersion characteristics.
基金supported by the National Natural Science Foundation of China(Grant No.41304132)the 53-Class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2013M532115)
文摘This study presents observation and detailed analysis on the double layers (DLs) in the ramp and the foreshock contacting with the foot of the terrestrial bow shock by THEMIS on September 14, 2008 under enhanced dynamic pressure in the solar wind. The results reveal that: (1) The time duration of the double layers is nus 10-40 mV/m. (2) On assuming a propagation speed at the ion mainly 3-8 ms, and their max parallel electric field is miacoustic speed (vs), their spatial scale is estimated to be 0.3-1.15 km (about 75-200 2D). (3) The net potential drop of DLs is estimated to be 5-32 V. (4) The DLs in the ramp and the foreshock contacting to the foot of the bow shock is current-carrying as a result of development and evolution of nonlinear phase of instability in the self-consistent current-carrying plasma. The DLs may play an important role in strong turbulence in the foreshock contacting with the foot of the bow shock.
基金supported by the National Natural Science Foundation of China (Grant No. 11072140)the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No. 0803)+1 种基金the Innovation Program of Shanghai Municipal Education Commission (Grant No.09YZ04)The Shanghai Program for Innovative Research Team in Universities is also acknowledged
文摘An analytical method is developed for the hydroelastic interaction between surface incident waves and a thin elastic plate of arbitrary geometry floating on an inviscid fluid of finite depth in the framework of linear potential flow.Three kinds of edge conditions are considered and the corresponding analytical representations are derived in the polar coordinate system.According to the surface boundary conditions,the fluid domain is divided into two regions,namely,an open water region and a plate-covered region.With the assumption that all the motion is time-harmonic,the series solutions for the spatial velocity potentials are derived by the method of eigenfunction expansion.The matching conditions for the continuities of the velocity and pressure are transformed by taking the inner products successively with respect to the vertical eigenfunction for the free surface and the angular eigenfunction.A system of simultaneous equations,including two edge conditions and two matching conditions,is set up for deriving the expansion coefficients.As an example,numerical computation for the expansion coefficients of truncated series is performed for an elliptic plate.The results show that the method suggested here is useful to revealing the physical features of the gravity wave scattering in the open water and the hydroelastic response in the plate.
基金supported by the National Basic Research Program of China (Grant No. 2009CB724103)
文摘The nonlinear evolution of a finite-amplitude disturbance in a 3-D supersonic boundary layer over a cone was investigated recently by Liu et al. using direct numerical simulation (DNS). It was found that certain small-scale 3-D disturbances amplified rapidly. These disturbances exhibit the characteristics of second modes, and the most amplified components have a well- defined spanwise wavelength, indicating a clear selectivity of the amplification. In the case of a cone, the three-dimensionality of the base flow and the disturbances themselves may be responsible for the rapid amplification. In order to ascertain which of these two effects are essential, in this study we carried out DNS of the nonlinear evolution of a spanwise localized disturbance (wavepacket) in a flat-plate boundary layer. A similar amplification of small-scale disturbances was observed, suggesting that the direct reason for the rapid amplification is the three-dimensionality of the disturbances rather than the three-dimensional nature of the base flow, even though the latter does alter the spanwise distribution of the disturbance. The rapid growth of 3-D waves may be attributed to the secondary instability mechanism. Further simulations were performed for a wavepacket of first modes in a supersonic boundary layer and of Tollmien-Schlichting (T-S) waves in an incompressible boundary layer. The re- suits show that the amplifying components are in the band centered at zero spanwise wavenumber rather than at a finite spanwise wavenumber. It is therefore concluded that the rapid growth of 3-D disturbances in a band centered at a preferred large spanwise wavenumber is the main characteristic of nonlinear evolution of second mode disturbances in supersonic boundary layers.