An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a ten...An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.展开更多
The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be s...The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.展开更多
Long-period ground motion has become an important consideration because of the increasing number of large and long-period structures.Therefore,a thorough investigation on the formation and characteristics of longperio...Long-period ground motion has become an important consideration because of the increasing number of large and long-period structures.Therefore,a thorough investigation on the formation and characteristics of longperiod ground motion is desirable for engineering applications.In this work,an analytical study is performed to examine the effect of several parameters and the combining mode for equivalent harmonic components on the dynamic response of systems.The results of the work show that the harmonic components in equivalent ground motion are evidently influenced by the intensity rise time,duration,phase and combining mode.Moreover,the long-period ground motions are simplified and simulated by separate harmonic components through proper combination.The findings of the work are believed to be useful in the selection of input ground motion in structural seismic analysis.展开更多
Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic q...Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic quantities, which describe the mechanisms of advection transport and shear instability by the sum of wave-like and eddy-like motions and circulation. Given that ocean turbulence generated by wave breaking is dominant at the ocean surface, we presented the boundary conditions of the turbulence kinetic energy and its dissipation rate, which are determined by energy loss from wave breaking and entrainment depth respectively. According to the equilibrium solution of the variation equations and available data of the dissipation rate, we obtained an analytical estimation of the characteristic quantities of surface-wave-generated turbulence in the upper ocean and its related mixing coefficient. The derived kinetic dissipation rate was validated by field measurements qualitatively and quantitatively, and the mixing coefficient had fairly good consistency with previous results based on the Prandtl mixing length theory.展开更多
A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition proble...A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition problem,which describes the one-dimensional seismic wave field. Then based on the special models of the source,path and local site,the physical random function model of ground motions is obtained whose physical parameters are random variables. The superposition method of narrow-band harmonic wave groups is improved to synthesize ground motion samples. Finally,an application of this model to simulate ground motion records in 1995 Kobe earthquake is described. The resulting accelerograms have the frequencydomain and non-stationary characteristics that are in full agreement with the realistic ground motion records.展开更多
基金supported by the National Natural Science Foundation of China (No. 51279187)the High Technology Research and Development Program of China (863 Program, No. 2010AA09Z303)+1 种基金the Fundamental Research Funds for the Central Universities (No.201262005)the Natural Science Foundation of Shandong Province (No. 2009ZRA05080)
文摘An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.
基金Supported by National Natural Science Foundation of China (No. 50978156 and No. 50908183)
文摘The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.
基金Supported by Major Research Plan of National Natural Science Foundation of China(No.91215301)National Natural Science Foundation of China(No.51238012,No.51178152,No.51008208)the Special Fund for Earthquake Scientific Research in the Public Interest(No.201208013)
文摘Long-period ground motion has become an important consideration because of the increasing number of large and long-period structures.Therefore,a thorough investigation on the formation and characteristics of longperiod ground motion is desirable for engineering applications.In this work,an analytical study is performed to examine the effect of several parameters and the combining mode for equivalent harmonic components on the dynamic response of systems.The results of the work show that the harmonic components in equivalent ground motion are evidently influenced by the intensity rise time,duration,phase and combining mode.Moreover,the long-period ground motions are simplified and simulated by separate harmonic components through proper combination.The findings of the work are believed to be useful in the selection of input ground motion in structural seismic analysis.
基金supported by National Natural Science Foundation of China(Grant Nos. 40776020, 41106032 and 40531005)National Basic Research Program of China (Grant Nos. G1999043800, 2006CB403600,2010CB950300 and 2010CB950404)
文摘Based on the equations of motion and the assumption that ocean turbulence is of isotropy or quasi-isotropy, we derived the closure equations of the second-order moments and the variation equations for characteristic quantities, which describe the mechanisms of advection transport and shear instability by the sum of wave-like and eddy-like motions and circulation. Given that ocean turbulence generated by wave breaking is dominant at the ocean surface, we presented the boundary conditions of the turbulence kinetic energy and its dissipation rate, which are determined by energy loss from wave breaking and entrainment depth respectively. According to the equilibrium solution of the variation equations and available data of the dissipation rate, we obtained an analytical estimation of the characteristic quantities of surface-wave-generated turbulence in the upper ocean and its related mixing coefficient. The derived kinetic dissipation rate was validated by field measurements qualitatively and quantitatively, and the mixing coefficient had fairly good consistency with previous results based on the Prandtl mixing length theory.
基金supported by the Funds for Creative Research Groups of China (Grant No.50621062)
文摘A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition problem,which describes the one-dimensional seismic wave field. Then based on the special models of the source,path and local site,the physical random function model of ground motions is obtained whose physical parameters are random variables. The superposition method of narrow-band harmonic wave groups is improved to synthesize ground motion samples. Finally,an application of this model to simulate ground motion records in 1995 Kobe earthquake is described. The resulting accelerograms have the frequencydomain and non-stationary characteristics that are in full agreement with the realistic ground motion records.