This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied....This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.展开更多
In order to reduce the noises affixed to the signals when testing high frequency devices,a single-port test mode(S11) is used to test frequency response of high frequency(GHz) and dual-port surface acoustic wave devic...In order to reduce the noises affixed to the signals when testing high frequency devices,a single-port test mode(S11) is used to test frequency response of high frequency(GHz) and dual-port surface acoustic wave devices(SAWDs) in this paper.The feasibility of the test is proved by simulating the Fabry-perot model.The frequency response of the high-frequency dual-port resonant-type diamond SAWD is measured by S11 and the dual-port test mode(S21),respectively.The results show that the quality factor of the device is 51.29 and the 3 dB bandwidth is 27.8 MHz by S11-mode measurement,which is better than the S21 mode,and is consistent with the frequency response curve by simulation.展开更多
文摘This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.
基金supported by the National Natural Science Foundation of China (Nos.50972105 and 60806030)Tianjin Natural Science Foundation (Nos.09JCZDJC16500,08JCYBJC14600 and ZD200709)
文摘In order to reduce the noises affixed to the signals when testing high frequency devices,a single-port test mode(S11) is used to test frequency response of high frequency(GHz) and dual-port surface acoustic wave devices(SAWDs) in this paper.The feasibility of the test is proved by simulating the Fabry-perot model.The frequency response of the high-frequency dual-port resonant-type diamond SAWD is measured by S11 and the dual-port test mode(S21),respectively.The results show that the quality factor of the device is 51.29 and the 3 dB bandwidth is 27.8 MHz by S11-mode measurement,which is better than the S21 mode,and is consistent with the frequency response curve by simulation.