Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two o...Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.展开更多
[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on t...[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on the morphological, physiological and biochemical characteristics were carried out and identification was performed to identify the strain. Finally, the bioflocculant was isolated and purified, and the flocculating activity and chemical characteristics were measured. [Result] It was identified as Serratia plumuthica based on its morphological, physiological and biochemical characteristics. This strain secreted flocculant best in a culture medium which included sucrose and NaNO3. The maximal cell growth was achieved within 10 h and the flocculating activity paralleled to it. It was found to be effective for flocculation of kaolin suspension, when added at a final concentration of 0.7 mg/L, over a range of pHs (2-7), and temperature (approximately 30-80 ℃). Chemical analysis indicated that the bioflocculant was an acidic polysaccharide consisting of glucose, glucuronic acid and galactose, talose and altrose. Infrared spectrum analysis also revealed typical characteristics of polysaccharides. [Conclusion] The biofloccu- lants produced by strain T-11 can greatly improve the ability of activated sludge to settle.展开更多
Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfill...Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.展开更多
Preferential flow is a rapid movement of solution through pores caused by coarse ores. Macropore is the main factor for the preferential flow. Macropore can be defined from three aspects. Segregation of the ores durin...Preferential flow is a rapid movement of solution through pores caused by coarse ores. Macropore is the main factor for the preferential flow. Macropore can be defined from three aspects. Segregation of the ores during dumping was studied according to particle kinematics. Small ores become smaller under the effect of acid and weathering. Clay in the rainwater from the hillside precipitates in the dump. Segregation and fine ores are the main causes in macropore. The permeability in coarse ores is better than that in fine ores. The mechanism in the preferential flows was studied combining the fast conducting effect of the macropore. Experimental result shows that, at certain application rate, fine ore area is saturated while large volume of solution flows laterally to the coarse ore area and leaks out quickly through the macropores. Thus the mechanism of preferential solution flows is further illustrated.展开更多
This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the...This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.展开更多
Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilita...Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids,citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential,isoelectric point(IEP),surface protonation and active alkaline-OH groups,which are critical factors for further improvement of physicochemical and biological properties later.Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods.Electrochemical characteristics were significantly improved by the amendments used,resulting in reduced IEP and-OH groups and decreased surface protonation for transformed residues.XRD results revealed that the primary alkaline minerals of cancrinite,calcite and grossular were transformed by the treatments.The treatments of citric acid and gypsum promoted the dissolution of cancrinite.From the SEM examination,citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of-OH groups on particle surfaces.The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.展开更多
In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth...In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth and have nice properties. This method is based on the solutions of linear systems of equation reformulation of KKT optimality conditions, by using the piecewise NCP functions. This method is implementable and globally convergent without assuming the strict complementarity condition, the isolatedness of accumulation points. Purr thermore, the gradients of active constraints are not requested to be linearly independent. The submatrix which may be obtained by quasi-Newton methods, is not requested to be uniformly positive definite. Preliminary numerical results indicate that this new QP-free method is quite promising.展开更多
This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline...This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.展开更多
A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and s...A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.展开更多
To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteris...To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteristic of mass loss and gas products generated during pyrolysis of the sludge with ZnCl2 activation were analyzed by thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TG-FTIR).The kinetic parameters were calculated by the Coats-Redfem method and the mechanism models were established.The role of ZnCl2 in the pyrolysis process of the sludge with ZnCl2 activation was also illustrated through the comparison of the pyrolysis characteristics and kinetics of the sludge with and without ZnCl2 activation.The results showed that the pyrolysis process of the sludge with ZnCl2 activation can be divided into four stages including the dehydration of sludge and initial depolymerization of a small portion of organics matters,the decomposition of large molecular organic matters into small molecular intermediates,the further degradation of intermediates and volatilization of ZnCl2,and the decomposition of inorganic minerals and undecomposed organic matters.CO2,CO,CH4,H2O,some aldehydes and carboxylic acids are the major pyrolysis gaseous products.The activation energies and pre-exponential factors are in the range of 28.84-206.42 kJ/mol and 9885.16-8.08× 1011 min-1,respectively.During the pyrolysis of sludge,ZnC12 not only can function as a dehydration agent and inhibit the formation of tar,but also can peptize the organic matters in the sludge,making them easier to be decomposed.展开更多
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain...Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.展开更多
This paper presents the results obtained for the effluent dewatering properties of anaerobic digestion of secondary sludge (SS) and anaerobic co-digestion of mixture of this sludge with the distillery wastewater (D...This paper presents the results obtained for the effluent dewatering properties of anaerobic digestion of secondary sludge (SS) and anaerobic co-digestion of mixture of this sludge with the distillery wastewater (DW) under thermophilic (55±1 ℃), 5 L of working volume, three parallel lab-scale conditions. Its mixtures were prepared with a DW content of 25%and 50% and the C/N ratios of mixtures are 13.1 and 17.6, respectively. The effluent dewatering properties were evaluated under stable conditions which the biogas yield and the effluent pH were steady. The natural settleability, biogas yield, centrifugal dewatering, centrifugal supernatant turbidity and specific resistance filtration (SRF) were investigated. The results showed that the effluent dewatering properties of anaerobic co-digestion of mixtures between SS and DW were better than that of anaerobic digestion of SS alone. In the anaerobic digestion system with the feed were SS, mixture of SS and a DW content of 25%and 50% in order, the net biogas yield of secondary sludge in ADSA,ADSB and ADSC were 0.42 0.507 and 0.511 m3 biogass/kg.VS.d ; compared with the biogas yield in anaerobic digestion system A (ADSA), the biogas yield in anaerobic digestion system B (ADSB) and anaerobic digestion system C (ADSC) had been increased by more than 20% respectively; the SRF of three digested sludge are(were) from 6.8×10^13, 1. 1×10^13 to 5.1×10^12 m/Kg, natural settling rates of 12 h are 26, 37 and 56% and that of 24 h are 32%, 45% and 59% respectively; the centrifugal dewatering rate of 3 min at speed of 1000 rpm were 16%, 31% and 51% respectively; the turbidity of centrifugal supernatant were 804, 754 and 678FTU simultaneously.展开更多
A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and us...A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).展开更多
Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,...Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,alkaline phase transformation pathway,and micro-morphological transition characteristics during the gypsum addition were investigated in an attempt to understand alkalinity stabilization behavior.Results demonstrated that alkaline anions stabilization degree in leachates can reach approximately 96.29%,whilst pH and alkalinity were reduced from 10.47 to 8.15,47.39 mmol/L to 2 mmol/L,respectively.During the alkalinity stabilization,chemical regulation behavior plays significant role in driving the co-precipitation reaction among the critical alkaline anions(CO3^2–,HCO3^–,Al(OH)4^–,OH^–),with calcium carbonate(CaCO3))being the most prevalent among the transformed alkaline phases.In addition,XRD and SEM-EDX analyses of the solid phase revealed that physical immobilization behavior would also influence the stability of soluble alkali and chemical bonded alkali due to released Ca^2+from gypsum which aggregated the clay particles and stabilized them into coarse particles with a blocky structure.These findings will be beneficial for effectively regulating strong alkalinity of BR.展开更多
In order to describe the relationship between dynamic process and sludge removing load in active sludge system, a new method for designing the volume of aeration tanks was put forward based on the Michaelis and Menten...In order to describe the relationship between dynamic process and sludge removing load in active sludge system, a new method for designing the volume of aeration tanks was put forward based on the Michaelis and Menten equation. the influence of sludge returning was considered in the design. The result shows that the parameter of sludge reflux ratio plays a very important role in the design of active sludge system. In some given conditions,there exists an optimum reflux ratio which can make the volume of aeration tank be the minimum.展开更多
Chemical compositions, mineral compositions and the activated mechanism of the coal-gangue were analyzed. And pozzolana activities of the coal-gangue were evaluated after activated. Moreover, hydration heat and hydrat...Chemical compositions, mineral compositions and the activated mechanism of the coal-gangue were analyzed. And pozzolana activities of the coal-gangue were evaluated after activated. Moreover, hydration heat and hydration compositions of activated coal-gangue-calcium oxide system, as well as hydration degree and hardened paste microstructures of activated coal-gangue-cement system were studied. Results show that pozzolana activities of the activated coal-gangue root in amorphous SiO2 and activated Al2O3. With the exciting of gypsum, the reaction of activated coal-gangue and Ca(OH) 2 would produce hydration products as ettringite, calcium silicate hydrate, and calcium aluminate. The relationship between the curing age and the content of Ca (OH)2 in coal-gangue-cement system was ascertained. Unhydrated particles in the coalogangue-cement paste were more than that in the neat cement paste at the same hydration periods, and even existed at the later stage of hydration. Furthermore, the activated coal-gangue could inhibit growth and gathering of the calcium oxide crystal, and improve the structure of hardened cement paste.展开更多
Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under d...Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.展开更多
The total experimental period was divided into two stages. At the first stage, a series of batch studies were carried out to get an understanding of the effect of ozouation on sludge properties. At the following stage...The total experimental period was divided into two stages. At the first stage, a series of batch studies were carried out to get an understanding of the effect of ozouation on sludge properties. At the following stages, three MBRs with different amounts of activated sludge to be ozonated were run in parallel for a long period to evaluate the influence of sludge ozonation on sludge yield and permeate quality. Through batch study, it was found that ozone could disrupt the cell walls and caused the release of plasm from the cells, then the amounts of soluble organics in the solution increased with ozouation time. With the rise of soluble organics, the amount of soluble organics to be mineralized increased as well, which would reduce the soluble organics content. For the counteraction between these two aspects, a pseudo-balanee could be achieved, and soluble organics would vary in a limited range. Sludge ozonation also increased the contents of nitrogen and phosphorus in the solution. In addition, ozouation was effective in improving sludge settling property. On the basis of batch study, a suitable ozone dosage of 0.16 kgO3/kgMLSS was determined. Three systems were run in parallel for a total period of 39 days, it was demonstrated that a part of activated sludge ozonation could reduce sludge production significantly, and biological perfonnanee of mineralization and nitrification would not be inhibited due to sludge ozouation. Experimental results proved that the combination of ozonation unit with MBR unit could achieve an excellent quality of permeate as well as a small quantity of sludge production, and economic analysis indicated that an additional ozonation operating cost for treatment of both wastewater and sludge was only 0.096Yuan (US$ 0.011,5 )/m^3 wastewater.展开更多
In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃...In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.展开更多
文摘Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
基金Supported by the Science Research Project of Qingdao Technical College in 2012(12-A-2)~~
文摘[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on the morphological, physiological and biochemical characteristics were carried out and identification was performed to identify the strain. Finally, the bioflocculant was isolated and purified, and the flocculating activity and chemical characteristics were measured. [Result] It was identified as Serratia plumuthica based on its morphological, physiological and biochemical characteristics. This strain secreted flocculant best in a culture medium which included sucrose and NaNO3. The maximal cell growth was achieved within 10 h and the flocculating activity paralleled to it. It was found to be effective for flocculation of kaolin suspension, when added at a final concentration of 0.7 mg/L, over a range of pHs (2-7), and temperature (approximately 30-80 ℃). Chemical analysis indicated that the bioflocculant was an acidic polysaccharide consisting of glucose, glucuronic acid and galactose, talose and altrose. Infrared spectrum analysis also revealed typical characteristics of polysaccharides. [Conclusion] The biofloccu- lants produced by strain T-11 can greatly improve the ability of activated sludge to settle.
基金Projects(41877551,41842020)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.
基金Project (50321402) supported by China Science Fundfor Distinguished Groupproject (2004CB619200) supported bytheNational Key Fundamental Research and Development Programof China +1 种基金project (50325415) supported by the National Science Fund forDistinguished Young Scholars of China project(50574099)supported by the National Natural Science Foundation of China
文摘Preferential flow is a rapid movement of solution through pores caused by coarse ores. Macropore is the main factor for the preferential flow. Macropore can be defined from three aspects. Segregation of the ores during dumping was studied according to particle kinematics. Small ores become smaller under the effect of acid and weathering. Clay in the rainwater from the hillside precipitates in the dump. Segregation and fine ores are the main causes in macropore. The permeability in coarse ores is better than that in fine ores. The mechanism in the preferential flows was studied combining the fast conducting effect of the macropore. Experimental result shows that, at certain application rate, fine ore area is saturated while large volume of solution flows laterally to the coarse ore area and leaks out quickly through the macropores. Thus the mechanism of preferential solution flows is further illustrated.
基金Supported by the Major National Water Sci-Tech Projects of China(2009ZX07210-009)the Department of Environmental Protection of Shandong Province(2006032,2060403)
文摘This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of China
文摘Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids,citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential,isoelectric point(IEP),surface protonation and active alkaline-OH groups,which are critical factors for further improvement of physicochemical and biological properties later.Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods.Electrochemical characteristics were significantly improved by the amendments used,resulting in reduced IEP and-OH groups and decreased surface protonation for transformed residues.XRD results revealed that the primary alkaline minerals of cancrinite,calcite and grossular were transformed by the treatments.The treatments of citric acid and gypsum promoted the dissolution of cancrinite.From the SEM examination,citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of-OH groups on particle surfaces.The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.
基金supported by the Natural science Foundation of China(10371089,10571137)
文摘In this paper, a QP-free feasible method with piecewise NCP functions is proposed for nonlinear inequality constrained optimization problems. The new NCP functions are piecewise linear-rational, regular pseudo-smooth and have nice properties. This method is based on the solutions of linear systems of equation reformulation of KKT optimality conditions, by using the piecewise NCP functions. This method is implementable and globally convergent without assuming the strict complementarity condition, the isolatedness of accumulation points. Purr thermore, the gradients of active constraints are not requested to be linearly independent. The submatrix which may be obtained by quasi-Newton methods, is not requested to be uniformly positive definite. Preliminary numerical results indicate that this new QP-free method is quite promising.
基金Projects(41877511,41842020) supported by the National Natural Science Foundation of ChinaProject(201509048) supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘This study focused on leaching behavior of alkaline anion and sodium in bauxite residue through ammonium chloride treatment.The results showed that the pH of bauxite residue decreased from 10.49 to 8.93,total alkaline anion(HCO3^-,CO3^2-,OH^-,AlO2^-)concentration reduced from 38.89 to 25.50 mmol/L,leaching rate of soluble sodium was 80.86%with ammonium chloride addition of 0.75%,liquid/solid(L/S)ratio of 3(mL/g),temperature of 30°C and reaction time of 18 h;L/S ratio was the main factor affecting the removal of alkaline anion and the leaching of sodium.Furthermore,ammonium chloride promoted the dissolution of diaspore and changed the micro/morphological characteristics with the increase of massive structure.The findings of this work will contribute to achieve soil-formation of bauxite residue.
基金financial supports from the National Natural Science Foundation of China (51634010,51904354)the National Science Fund for Distinguished Young Scholars of China (51825403)+1 种基金the National Key R&D Program of China (2018YFC1900306,2019YFC1907405)Key Research and Development Program of Hunan Province,China (2019SK2291)。
文摘A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008106)
文摘To obtain the pyrolysis characteristics and kinetics of preparation process of sludge-based activated carbon by ZnCl2 activation method (i.e.the pyrolysis process of the sludge with ZnCl2 activation),the characteristic of mass loss and gas products generated during pyrolysis of the sludge with ZnCl2 activation were analyzed by thermogravimetric analysis coupled with Fourier Transform Infrared Spectroscopy (TG-FTIR).The kinetic parameters were calculated by the Coats-Redfem method and the mechanism models were established.The role of ZnCl2 in the pyrolysis process of the sludge with ZnCl2 activation was also illustrated through the comparison of the pyrolysis characteristics and kinetics of the sludge with and without ZnCl2 activation.The results showed that the pyrolysis process of the sludge with ZnCl2 activation can be divided into four stages including the dehydration of sludge and initial depolymerization of a small portion of organics matters,the decomposition of large molecular organic matters into small molecular intermediates,the further degradation of intermediates and volatilization of ZnCl2,and the decomposition of inorganic minerals and undecomposed organic matters.CO2,CO,CH4,H2O,some aldehydes and carboxylic acids are the major pyrolysis gaseous products.The activation energies and pre-exponential factors are in the range of 28.84-206.42 kJ/mol and 9885.16-8.08× 1011 min-1,respectively.During the pyrolysis of sludge,ZnC12 not only can function as a dehydration agent and inhibit the formation of tar,but also can peptize the organic matters in the sludge,making them easier to be decomposed.
基金Projects(41701587,41877511)supported by the National Natural Science Foundation of China
文摘Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.
文摘This paper presents the results obtained for the effluent dewatering properties of anaerobic digestion of secondary sludge (SS) and anaerobic co-digestion of mixture of this sludge with the distillery wastewater (DW) under thermophilic (55±1 ℃), 5 L of working volume, three parallel lab-scale conditions. Its mixtures were prepared with a DW content of 25%and 50% and the C/N ratios of mixtures are 13.1 and 17.6, respectively. The effluent dewatering properties were evaluated under stable conditions which the biogas yield and the effluent pH were steady. The natural settleability, biogas yield, centrifugal dewatering, centrifugal supernatant turbidity and specific resistance filtration (SRF) were investigated. The results showed that the effluent dewatering properties of anaerobic co-digestion of mixtures between SS and DW were better than that of anaerobic digestion of SS alone. In the anaerobic digestion system with the feed were SS, mixture of SS and a DW content of 25%and 50% in order, the net biogas yield of secondary sludge in ADSA,ADSB and ADSC were 0.42 0.507 and 0.511 m3 biogass/kg.VS.d ; compared with the biogas yield in anaerobic digestion system A (ADSA), the biogas yield in anaerobic digestion system B (ADSB) and anaerobic digestion system C (ADSC) had been increased by more than 20% respectively; the SRF of three digested sludge are(were) from 6.8×10^13, 1. 1×10^13 to 5.1×10^12 m/Kg, natural settling rates of 12 h are 26, 37 and 56% and that of 24 h are 32%, 45% and 59% respectively; the centrifugal dewatering rate of 3 min at speed of 1000 rpm were 16%, 31% and 51% respectively; the turbidity of centrifugal supernatant were 804, 754 and 678FTU simultaneously.
基金Projects(41501350,41461071,31860170)supported by the National Natural Science Foundation of China
文摘A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).
基金Project(41877511)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for the Chinese Public Welfare Industry,China
文摘Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,alkaline phase transformation pathway,and micro-morphological transition characteristics during the gypsum addition were investigated in an attempt to understand alkalinity stabilization behavior.Results demonstrated that alkaline anions stabilization degree in leachates can reach approximately 96.29%,whilst pH and alkalinity were reduced from 10.47 to 8.15,47.39 mmol/L to 2 mmol/L,respectively.During the alkalinity stabilization,chemical regulation behavior plays significant role in driving the co-precipitation reaction among the critical alkaline anions(CO3^2–,HCO3^–,Al(OH)4^–,OH^–),with calcium carbonate(CaCO3))being the most prevalent among the transformed alkaline phases.In addition,XRD and SEM-EDX analyses of the solid phase revealed that physical immobilization behavior would also influence the stability of soluble alkali and chemical bonded alkali due to released Ca^2+from gypsum which aggregated the clay particles and stabilized them into coarse particles with a blocky structure.These findings will be beneficial for effectively regulating strong alkalinity of BR.
文摘In order to describe the relationship between dynamic process and sludge removing load in active sludge system, a new method for designing the volume of aeration tanks was put forward based on the Michaelis and Menten equation. the influence of sludge returning was considered in the design. The result shows that the parameter of sludge reflux ratio plays a very important role in the design of active sludge system. In some given conditions,there exists an optimum reflux ratio which can make the volume of aeration tank be the minimum.
基金the National Basic Reasearch Program of China(Grant No.2001CB610704).
文摘Chemical compositions, mineral compositions and the activated mechanism of the coal-gangue were analyzed. And pozzolana activities of the coal-gangue were evaluated after activated. Moreover, hydration heat and hydration compositions of activated coal-gangue-calcium oxide system, as well as hydration degree and hardened paste microstructures of activated coal-gangue-cement system were studied. Results show that pozzolana activities of the activated coal-gangue root in amorphous SiO2 and activated Al2O3. With the exciting of gypsum, the reaction of activated coal-gangue and Ca(OH) 2 would produce hydration products as ettringite, calcium silicate hydrate, and calcium aluminate. The relationship between the curing age and the content of Ca (OH)2 in coal-gangue-cement system was ascertained. Unhydrated particles in the coalogangue-cement paste were more than that in the neat cement paste at the same hydration periods, and even existed at the later stage of hydration. Furthermore, the activated coal-gangue could inhibit growth and gathering of the calcium oxide crystal, and improve the structure of hardened cement paste.
文摘Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.
基金yhReceived Sep.6,2004Sponsored by Fok Ying Tung Education Foundation (No.94004) ,Shanghai Natural Science Foundation (No.04ZR14010) andLaboratory of Water Quality Science & water Environment Recovery Engineering of Beijing
文摘The total experimental period was divided into two stages. At the first stage, a series of batch studies were carried out to get an understanding of the effect of ozouation on sludge properties. At the following stages, three MBRs with different amounts of activated sludge to be ozonated were run in parallel for a long period to evaluate the influence of sludge ozonation on sludge yield and permeate quality. Through batch study, it was found that ozone could disrupt the cell walls and caused the release of plasm from the cells, then the amounts of soluble organics in the solution increased with ozouation time. With the rise of soluble organics, the amount of soluble organics to be mineralized increased as well, which would reduce the soluble organics content. For the counteraction between these two aspects, a pseudo-balanee could be achieved, and soluble organics would vary in a limited range. Sludge ozonation also increased the contents of nitrogen and phosphorus in the solution. In addition, ozouation was effective in improving sludge settling property. On the basis of batch study, a suitable ozone dosage of 0.16 kgO3/kgMLSS was determined. Three systems were run in parallel for a total period of 39 days, it was demonstrated that a part of activated sludge ozonation could reduce sludge production significantly, and biological perfonnanee of mineralization and nitrification would not be inhibited due to sludge ozouation. Experimental results proved that the combination of ozonation unit with MBR unit could achieve an excellent quality of permeate as well as a small quantity of sludge production, and economic analysis indicated that an additional ozonation operating cost for treatment of both wastewater and sludge was only 0.096Yuan (US$ 0.011,5 )/m^3 wastewater.
基金Project(2019zzts678)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.