This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the ...This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.展开更多
The material sources and control factors of rare earth elemems (REEs) for 25 borehole bulk samples from the Late Permian Longtan Formation in Mount Huaying (borehole number: ZK10-6), Sichuan Province, South China...The material sources and control factors of rare earth elemems (REEs) for 25 borehole bulk samples from the Late Permian Longtan Formation in Mount Huaying (borehole number: ZK10-6), Sichuan Province, South China, were investigated. All samples were determined by inductively coupled plasma mass spectrometry (ICP-MS). The chondrite-normalized distribution patterns of mudstone samples are uniform. All samples belong to the light rare earth element (LREE)-rich type and are enriched in LREEs relative to heavy rare earth elements (HREEs). The distribution curves of REEs in mudstone are highly similar to Mount Emei basalt and the three periods of REEs enrichment correspond to three Mount Emei basalt eruption cycles in Longtan period. The results indicate that REE patterns are not controlled by materials from the seawater or land plants. The predominant sources of REEs are from terrigenous material as indicated by negative Eu anomaly. So, the sources of REEs are controlled by terrigenous material, and the Mount Emei basalt is the predominant source of terrigenous material. Thus, transgression-regression is another control factor of REEs enrichment.展开更多
基金Project(51378510)supported by National Natural Science Foundation of China。
文摘This paper presents a risk evaluation model of water and mud inrush for tunnel excavation in karst areas.The factors affecting the probabilities of water and mud inrush in karst tunnels are investigated to define the dangerousness of this geological disaster.The losses that are caused by water and mud inrush are taken into consideration to account for its harmfulness.Then a risk evaluation model based on the dangerousness-harmfulness evaluation indicator system is constructed,which is more convincing in comparison with the traditional methods.The catastrophe theory is used to evaluate the risk level of water and mud inrush and it has great advantage in handling problems involving discontinuous catastrophe processes.To validate the proposed approach,the Qiyueshan tunnel of Yichang-Wanzhou Railway is taken as an example in which four target segments are evaluated using the risk evaluation model.Finally,the evaluation results are compared with the excavation data,which shows that the risk levels predicted by the proposed approach are in good agreements with that observed in engineering.In conclusion,the catastrophe theory-based risk evaluation model is an efficient and effective approach for water and mud inrush in karst tunnels.
基金Project(40839910) supported by the National Natural Science Foundation of China
文摘The material sources and control factors of rare earth elemems (REEs) for 25 borehole bulk samples from the Late Permian Longtan Formation in Mount Huaying (borehole number: ZK10-6), Sichuan Province, South China, were investigated. All samples were determined by inductively coupled plasma mass spectrometry (ICP-MS). The chondrite-normalized distribution patterns of mudstone samples are uniform. All samples belong to the light rare earth element (LREE)-rich type and are enriched in LREEs relative to heavy rare earth elements (HREEs). The distribution curves of REEs in mudstone are highly similar to Mount Emei basalt and the three periods of REEs enrichment correspond to three Mount Emei basalt eruption cycles in Longtan period. The results indicate that REE patterns are not controlled by materials from the seawater or land plants. The predominant sources of REEs are from terrigenous material as indicated by negative Eu anomaly. So, the sources of REEs are controlled by terrigenous material, and the Mount Emei basalt is the predominant source of terrigenous material. Thus, transgression-regression is another control factor of REEs enrichment.