通过土槽冲刷试验结合体积法估算不同流量(2、4、8 L min-1)和坡度(5°、10°、15°、20°、25°)条件下,细沟侵蚀体积及其分布规律,进而研究黄土细沟侵蚀过程及坡度、流量对其的影响。结果表明:细沟侵蚀过程不是...通过土槽冲刷试验结合体积法估算不同流量(2、4、8 L min-1)和坡度(5°、10°、15°、20°、25°)条件下,细沟侵蚀体积及其分布规律,进而研究黄土细沟侵蚀过程及坡度、流量对其的影响。结果表明:细沟侵蚀过程不是沿其均一恒定的,累积侵蚀泥沙量及含沙量均随着细沟的增长近似呈指数增加,且这个趋势在陡坡和大流量下更为显著。坡度和流量的增大均能造成累积侵蚀泥沙量及含沙量的增加,即导致细沟侵蚀程度加重,但是流量对于侵蚀的影响权重远大于坡度。且实测的侵蚀泥沙总量及水流含沙量与体积法测得累积侵蚀泥沙量及含沙量的对比验证了本试验体积法估算细沟侵蚀总量及沿程分布规律的准确性及实用性,其结果为细沟侵蚀动态过程研究及预测提供了理论依据。展开更多
Sediment-associated processes, such as sediment erosion, deposition, and pore water diffusion/advection affect sorptive contaminant transport. By considering these processes, we developed an equation to simulate conta...Sediment-associated processes, such as sediment erosion, deposition, and pore water diffusion/advection affect sorptive contaminant transport. By considering these processes, we developed an equation to simulate contaminant transport. Erosion and deposition processes are considered as erosion and deposition fluxes of sediment, and adsorption-desorption processes of contaminants by sediment are simulated using the Langmuir Equation. Pore water diffusion is calculated based on the contaminant concentration gradient across the sediment-water interface. Pore water advection is estimated using pore water contained in the sediments of erosion flux. The equation is validated to simulate total phosphorus concentrations in Guanhe estuary in the northern Jiangsu, China. The simulated total phosphorus concentrations show better agreement with field observations compared to estimations that do consider sediment-associated processes.展开更多
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China a...This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.展开更多
The Three Gorges Reservoir, the world’s largest hydropower reservoir, receives a significant sediment yield from soil erosion. Sloping farmland is the main source, exacerbated by changes in land use from relocating t...The Three Gorges Reservoir, the world’s largest hydropower reservoir, receives a significant sediment yield from soil erosion. Sloping farmland is the main source, exacerbated by changes in land use from relocating the inhabitants, and from engineering projects related to dam construction. Related geo-hazards, including landsliding of valley-side slopes, will further increase the sediment yield to the completed reservoir. Integrated watershed management, begun extensively in 1989, has effectively controlled soil erosion and sediment delivery to date. What is described here as the Taipinxi Mode of integrated watershed management, based on its application in the 26.14 km2 watershed of that name in Yiling District, has been successful and is recommended for the entire region. The effects of this set of erosion-mitigation measures are assessed, using experienced formulas for soil and water conservation and information from remote sensing. The amount of soil erosion, and of sediment delivery to the reservoir were reduced by 43.75–45.94 × 106 t y-1, and by 12.25–12.86 × 106 t y-1, respectively, by 2005, by which time the project had been operative for 16 years.展开更多
In order to prevent soil erosion in southern China,a study was performed to determine the drivers of sediment concentration variation using simulated rainfall and four soil management systems under field condition.Fou...In order to prevent soil erosion in southern China,a study was performed to determine the drivers of sediment concentration variation using simulated rainfall and four soil management systems under field condition.Four soil management systems,i.e.,forest and grass coverage(FG),forest coverage with disturbed soil surface(FD),contour tillage(CT) and downslope tillage(DT),were exposed to two rainfall intensities(40 and 54 mm h-1) using a portable rainfall simulator.The drivers of sediment concentration variation were determined by the variations of runoff rate and sediment concentration as well as their relationships.The effects of the four soil management systems in preventing water and soil losses were compared using runoff rates and sediment concentrations at steady state.At runoff initial stage,sediment concentration variation was mainly driven by rainfall and management.The degree of sediment concentration variation driven by flow varied with different soil management systems.Three best relationships between runoff rate and sediment concentration were identified,i.e.,reciprocal(CT),quadratic(FG and FD) and exponential(DT).At steady state,runoff rates of the four soil management systems varied slightly,whereas their sediment concentrations varied greatly.FG and CT were recommended as the best soil management systems for preventing water and soil losses.展开更多
文摘通过土槽冲刷试验结合体积法估算不同流量(2、4、8 L min-1)和坡度(5°、10°、15°、20°、25°)条件下,细沟侵蚀体积及其分布规律,进而研究黄土细沟侵蚀过程及坡度、流量对其的影响。结果表明:细沟侵蚀过程不是沿其均一恒定的,累积侵蚀泥沙量及含沙量均随着细沟的增长近似呈指数增加,且这个趋势在陡坡和大流量下更为显著。坡度和流量的增大均能造成累积侵蚀泥沙量及含沙量的增加,即导致细沟侵蚀程度加重,但是流量对于侵蚀的影响权重远大于坡度。且实测的侵蚀泥沙总量及水流含沙量与体积法测得累积侵蚀泥沙量及含沙量的对比验证了本试验体积法估算细沟侵蚀总量及沿程分布规律的准确性及实用性,其结果为细沟侵蚀动态过程研究及预测提供了理论依据。
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200802940014)
文摘Sediment-associated processes, such as sediment erosion, deposition, and pore water diffusion/advection affect sorptive contaminant transport. By considering these processes, we developed an equation to simulate contaminant transport. Erosion and deposition processes are considered as erosion and deposition fluxes of sediment, and adsorption-desorption processes of contaminants by sediment are simulated using the Langmuir Equation. Pore water diffusion is calculated based on the contaminant concentration gradient across the sediment-water interface. Pore water advection is estimated using pore water contained in the sediments of erosion flux. The equation is validated to simulate total phosphorus concentrations in Guanhe estuary in the northern Jiangsu, China. The simulated total phosphorus concentrations show better agreement with field observations compared to estimations that do consider sediment-associated processes.
基金support for this study was jointly provided by the Chinese Academy of Sciences (No. ZCX2-XB3-09)the Ministry of Science and Technology of China (No. 2011BAD31B03)
文摘This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.
基金State Key Project of 2006BAC10B04, ChinaCAS Knowledge Innovation Project of KZCX2-YW-302
文摘The Three Gorges Reservoir, the world’s largest hydropower reservoir, receives a significant sediment yield from soil erosion. Sloping farmland is the main source, exacerbated by changes in land use from relocating the inhabitants, and from engineering projects related to dam construction. Related geo-hazards, including landsliding of valley-side slopes, will further increase the sediment yield to the completed reservoir. Integrated watershed management, begun extensively in 1989, has effectively controlled soil erosion and sediment delivery to date. What is described here as the Taipinxi Mode of integrated watershed management, based on its application in the 26.14 km2 watershed of that name in Yiling District, has been successful and is recommended for the entire region. The effects of this set of erosion-mitigation measures are assessed, using experienced formulas for soil and water conservation and information from remote sensing. The amount of soil erosion, and of sediment delivery to the reservoir were reduced by 43.75–45.94 × 106 t y-1, and by 12.25–12.86 × 106 t y-1, respectively, by 2005, by which time the project had been operative for 16 years.
基金Supported by the National Basic Research Program of China(No.2007CB407206)the National Natural Science Foundation of China(No.40621001)the Frontier Project of the Chinese Academy of Sciences(No.ISSASIP0715)
文摘In order to prevent soil erosion in southern China,a study was performed to determine the drivers of sediment concentration variation using simulated rainfall and four soil management systems under field condition.Four soil management systems,i.e.,forest and grass coverage(FG),forest coverage with disturbed soil surface(FD),contour tillage(CT) and downslope tillage(DT),were exposed to two rainfall intensities(40 and 54 mm h-1) using a portable rainfall simulator.The drivers of sediment concentration variation were determined by the variations of runoff rate and sediment concentration as well as their relationships.The effects of the four soil management systems in preventing water and soil losses were compared using runoff rates and sediment concentrations at steady state.At runoff initial stage,sediment concentration variation was mainly driven by rainfall and management.The degree of sediment concentration variation driven by flow varied with different soil management systems.Three best relationships between runoff rate and sediment concentration were identified,i.e.,reciprocal(CT),quadratic(FG and FD) and exponential(DT).At steady state,runoff rates of the four soil management systems varied slightly,whereas their sediment concentrations varied greatly.FG and CT were recommended as the best soil management systems for preventing water and soil losses.