Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field d...Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field downstream of a backward-facing step. Instantaneous flow velocity fields were measured by using Particle Image Velocimetry (PIV), and an image processing method for determining probability of sediment incipience was employed to analyze the experimental data. The experimental results showed that the probability of sediment incipience was the highest near the reattachment point, even though the near-wall instantaneous flow velocity and the Reynolds stress were both much higher further downstream of the backward-facing step. The possible me- chanisms are discussed for the sediment incipience near the reattachment point.展开更多
基金National Natural Science Foundation of China (No.10602017)Maritime Research Center and DHI-NTU Center of Nanyang Technological University, Singapore
文摘Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field downstream of a backward-facing step. Instantaneous flow velocity fields were measured by using Particle Image Velocimetry (PIV), and an image processing method for determining probability of sediment incipience was employed to analyze the experimental data. The experimental results showed that the probability of sediment incipience was the highest near the reattachment point, even though the near-wall instantaneous flow velocity and the Reynolds stress were both much higher further downstream of the backward-facing step. The possible me- chanisms are discussed for the sediment incipience near the reattachment point.