This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mud...This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.展开更多
The cultivation experiment was carried out to investigate the effects of dif-ferent proportions of peat soil, perlite, vermiculite and yel ow mud on growth of Gesneriaceae species (Chirita gueilinensis, Sinningia spe...The cultivation experiment was carried out to investigate the effects of dif-ferent proportions of peat soil, perlite, vermiculite and yel ow mud on growth of Gesneriaceae species (Chirita gueilinensis, Sinningia speciosa, Lysionotus pauci-florus, Hemiboea henryi, Aeschynanthus acuminatus, Saintpaulia ionantha). The growth traits of each plant growing in 7 different matrix materials were investigated. The plant height, crown width and chlorophyl content of each plant were mea-sured. The results showed that the best substrate ratio was peat soil∶vermiculite=2∶1 for C. gueilinensis, L. pauciflorus and H. henryi; peat soil∶perlite∶vermiculite = 2∶1∶1 for S. ionantha; peat soil∶vermiculite∶yel ow mud=2∶1∶1 for S. speciosa; peat soil∶per-lite∶vermiculite∶yel ow mud=2∶1∶1∶1 for A. acuminatus.展开更多
基金Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+3 种基金Project(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology,ChinaProject(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology), ChinaProject(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(SJCX202017) supported by the Practical Innovation Program for Graduates of Changsha University of Science & Technology, China。
文摘This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.
基金Supported by National Natural Science Foundation of China(Grant No.31200159)Program of Shenzhen City Authority(201206)
文摘The cultivation experiment was carried out to investigate the effects of dif-ferent proportions of peat soil, perlite, vermiculite and yel ow mud on growth of Gesneriaceae species (Chirita gueilinensis, Sinningia speciosa, Lysionotus pauci-florus, Hemiboea henryi, Aeschynanthus acuminatus, Saintpaulia ionantha). The growth traits of each plant growing in 7 different matrix materials were investigated. The plant height, crown width and chlorophyl content of each plant were mea-sured. The results showed that the best substrate ratio was peat soil∶vermiculite=2∶1 for C. gueilinensis, L. pauciflorus and H. henryi; peat soil∶perlite∶vermiculite = 2∶1∶1 for S. ionantha; peat soil∶vermiculite∶yel ow mud=2∶1∶1 for S. speciosa; peat soil∶per-lite∶vermiculite∶yel ow mud=2∶1∶1∶1 for A. acuminatus.