Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris...Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.展开更多
Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in hist...Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in history,and have caused destructive disaster to local residents at the mouth of ravine and blocked Brahmaputra.The huge altitude difference and the steep slope of the Zelongnong Ravine provide predominant energy conditions for the debris-flow.The drainage basin is located in the fast uplifted area,where the complicated geologic structure,the cracked rock,and the frequent earthquake make the rocks experience strong weathering,thus plenty of granular materials are available for the formation of debris-flows.Although this region is located in the rain shadow area,the precipitation is concentrated and most is with high intensity.Also,the strong glacier activity provides water source for debris-flow.According to literature reviews,most debris-flows in the ravine are induced by rainstorms,and their scales are relatively small.However,when the melted water is overlaid,the large scale debris-flows may occur.Parametric calculation such as the flow velocity and the runoff is conducted according to the monitoring data.The result shows that large debris-flows can be aroused when the rainstorm and the melted water are combined well,but the possibility of blocking off Brahmaputra is rare.The occurrence of the super debris-flows is closely related to the intense glacier activity(e.g.,glaciersurge).They often result in destructive disasters and are hard to be prevented and cured by engineering measures,due to the oversized scales.The hazard mitigation measures such as monitoring and prediction are proposed.展开更多
基金supported by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS KAKENHI) (Grant Nos.80378918,26292077)
文摘Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.
基金supported by the National Natural Science Foundation of China(Grant No.40871024 & 40971014)
文摘Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in history,and have caused destructive disaster to local residents at the mouth of ravine and blocked Brahmaputra.The huge altitude difference and the steep slope of the Zelongnong Ravine provide predominant energy conditions for the debris-flow.The drainage basin is located in the fast uplifted area,where the complicated geologic structure,the cracked rock,and the frequent earthquake make the rocks experience strong weathering,thus plenty of granular materials are available for the formation of debris-flows.Although this region is located in the rain shadow area,the precipitation is concentrated and most is with high intensity.Also,the strong glacier activity provides water source for debris-flow.According to literature reviews,most debris-flows in the ravine are induced by rainstorms,and their scales are relatively small.However,when the melted water is overlaid,the large scale debris-flows may occur.Parametric calculation such as the flow velocity and the runoff is conducted according to the monitoring data.The result shows that large debris-flows can be aroused when the rainstorm and the melted water are combined well,but the possibility of blocking off Brahmaputra is rare.The occurrence of the super debris-flows is closely related to the intense glacier activity(e.g.,glaciersurge).They often result in destructive disasters and are hard to be prevented and cured by engineering measures,due to the oversized scales.The hazard mitigation measures such as monitoring and prediction are proposed.