Tidal cycle measurements of tidal currents, salinity and water tempe rature, and suspended sediment concentrations were measured at four stations, to gether with surveys along two profiles short core collection within...Tidal cycle measurements of tidal currents, salinity and water tempe rature, and suspended sediment concentrations were measured at four stations, to gether with surveys along two profiles short core collection within the Yalu Riv er estuary. Grain size analysis of the three core sediment showed that: 1) the s ediment from B1 to B3 became finer, worse sorting and positively skewed; 2) the diversification of matter origin became more and more evident from east to west; 3) the sediments over the region were of the same origin, as indicated by their similar colors and grain sizes. The data indicated that stratification occurred in the flood season, from upstream to downstream, and a salt wedge was formed. The water column was well mixed, but the longitudinal gradient of the salinity w as larger on spring tide. The results also showed that the dominating mechanism of suspended sediment transport in the Yalu River estuary was T1, T2, T3 and T5. The non-tidal steady advection transport was restricted by the net transport o f suspended sediment induced by mass Stoked drift directed to landwards, then th e net sediment transport rate were decreased and the turbidity maxima was also f avored to forming and extending.展开更多
Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field d...Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field downstream of a backward-facing step. Instantaneous flow velocity fields were measured by using Particle Image Velocimetry (PIV), and an image processing method for determining probability of sediment incipience was employed to analyze the experimental data. The experimental results showed that the probability of sediment incipience was the highest near the reattachment point, even though the near-wall instantaneous flow velocity and the Reynolds stress were both much higher further downstream of the backward-facing step. The possible me- chanisms are discussed for the sediment incipience near the reattachment point.展开更多
文摘Tidal cycle measurements of tidal currents, salinity and water tempe rature, and suspended sediment concentrations were measured at four stations, to gether with surveys along two profiles short core collection within the Yalu Riv er estuary. Grain size analysis of the three core sediment showed that: 1) the s ediment from B1 to B3 became finer, worse sorting and positively skewed; 2) the diversification of matter origin became more and more evident from east to west; 3) the sediments over the region were of the same origin, as indicated by their similar colors and grain sizes. The data indicated that stratification occurred in the flood season, from upstream to downstream, and a salt wedge was formed. The water column was well mixed, but the longitudinal gradient of the salinity w as larger on spring tide. The results also showed that the dominating mechanism of suspended sediment transport in the Yalu River estuary was T1, T2, T3 and T5. The non-tidal steady advection transport was restricted by the net transport o f suspended sediment induced by mass Stoked drift directed to landwards, then th e net sediment transport rate were decreased and the turbidity maxima was also f avored to forming and extending.
基金National Natural Science Foundation of China (No.10602017)Maritime Research Center and DHI-NTU Center of Nanyang Technological University, Singapore
文摘Sediment incipience under flows passing a backward-facing step was studied. A series of experiments were conducted to measure scouring depth, probability of sediment incipience, and instantaneous flow velocity field downstream of a backward-facing step. Instantaneous flow velocity fields were measured by using Particle Image Velocimetry (PIV), and an image processing method for determining probability of sediment incipience was employed to analyze the experimental data. The experimental results showed that the probability of sediment incipience was the highest near the reattachment point, even though the near-wall instantaneous flow velocity and the Reynolds stress were both much higher further downstream of the backward-facing step. The possible me- chanisms are discussed for the sediment incipience near the reattachment point.