We evaluated the effect of pH on larval development in larval Pacific oyster(Crassostrea gigas) and blood cockle(Arca inflata Reeve).The larvae were reared at pH 8.2(control),7.9,7.6,or 7.3beginning 30 min or 24 h pos...We evaluated the effect of pH on larval development in larval Pacific oyster(Crassostrea gigas) and blood cockle(Arca inflata Reeve).The larvae were reared at pH 8.2(control),7.9,7.6,or 7.3beginning 30 min or 24 h post fertilization.Exposure to lower pH during early embryonic development inhibited larval shell formation in both species.Compared with the control,larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3.Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3.However,when exposure was delayed until 24 h post fertilization,shell formation was only inhibited in blood cockle larvae reared at pH 7.3.Thus,the early embryonic stages were more sensitive to acidified conditions.Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves.Although the effects appear subtle,they may accumulate and lead to subsequent issues during later larval development.展开更多
基金Supported by the Special Scientific Research Funds for Central Non-Profit Institutes,CAFS(No.2014A01 YYOl)the National Basic Research Program of China(973 Program)(No.2011CB409805)+1 种基金the Earmarked Fund for Modern Agro-Industry Technology Research System(No.CARS-48)the National Key Technology R&D Program of China(No.2011BAD45B01)
文摘We evaluated the effect of pH on larval development in larval Pacific oyster(Crassostrea gigas) and blood cockle(Arca inflata Reeve).The larvae were reared at pH 8.2(control),7.9,7.6,or 7.3beginning 30 min or 24 h post fertilization.Exposure to lower pH during early embryonic development inhibited larval shell formation in both species.Compared with the control,larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3.Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3.However,when exposure was delayed until 24 h post fertilization,shell formation was only inhibited in blood cockle larvae reared at pH 7.3.Thus,the early embryonic stages were more sensitive to acidified conditions.Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves.Although the effects appear subtle,they may accumulate and lead to subsequent issues during later larval development.