Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them conside...Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.展开更多
The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupl...The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.展开更多
We investigate the possibility of injection of a nucleotide via single-walled carbon nanotubes (SWNTs). The collapse process of an SWNT with a large radius may proceed like falling dominoes. The characteristics of a l...We investigate the possibility of injection of a nucleotide via single-walled carbon nanotubes (SWNTs). The collapse process of an SWNT with a large radius may proceed like falling dominoes. The characteristics of a large radius SWNT are utilized to drive the nucleotide movement in the SWNT, or even to inject the stored nucleotide out of the SWNT. In this process, the lateral section of the collapsed SWNT resembles a dumbbell. Occasionally, the nucleotide in the SWNT will be inbreathed into one of the two dumbbell ends, leading to interference with the injection process. To investigate the random nature of the injection process, a series of simulations on SWNT with different lengths were carried out. It was found that the injection probability was not influenced by the tube length. Freezing the nucleotide at the beginning, or modifying the SWNT at the outlet, may serve to facilitate the injection process, as indicated by the rise in the injection probability.展开更多
基金Supported by Guangzhou Nansha District Bureau of Economy & Trade, Science & Technology, Information, Project (201103003)the Fundamental Research Funds for the Central Universities (2012QNA5012)+1 种基金Project of Education Department of Zhejiang Province (Y201223159)Technology Foundation for Selected Overseas Chinese Scholar of Zhejiang Province (J20120561)
文摘Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
基金Supported by the National Basic Research Program of China(2012CB025903)the National Natural Science Foundation of China(91434201,11402210)
文摘The simulation of three-dimensional (3D) non-isothermal, non-Newtonian fluid filling process is an extremely difficult task and remains a challenging problem, which includes polymer melt flow with free surface coupled with transient heat transfer. This paper presents a full 3D non-isothermal two-phase flow model to predict the complex flow in melt filling process, where the Cross-WLF model is applied to characterize the rheological behav- ior of polymer melt. The governing equations are solved using finite volume method with SIMPLEC algorithm on collocated grids and the melt front is accurately captured by a high resolution level set method. A domain exten- sion technique is adopted to deal with the complex cavities, which greatly reduces the computational burden. To verify the validity of the developed 3D approach, the melts filling processes in two thin rectangular cavities (one of them with a cylindrical insert) are simulated. The predicted melt front interfaces are in good agreement with the experiment and commercial software prediction. For a case with a rather complex cavity, the dynamic filling process in a hemispherical shell is successfully simulated. All of the numerical results show that the developed numerical procedure can provide a reasonable orediction for injection molding process.
文摘We investigate the possibility of injection of a nucleotide via single-walled carbon nanotubes (SWNTs). The collapse process of an SWNT with a large radius may proceed like falling dominoes. The characteristics of a large radius SWNT are utilized to drive the nucleotide movement in the SWNT, or even to inject the stored nucleotide out of the SWNT. In this process, the lateral section of the collapsed SWNT resembles a dumbbell. Occasionally, the nucleotide in the SWNT will be inbreathed into one of the two dumbbell ends, leading to interference with the injection process. To investigate the random nature of the injection process, a series of simulations on SWNT with different lengths were carried out. It was found that the injection probability was not influenced by the tube length. Freezing the nucleotide at the beginning, or modifying the SWNT at the outlet, may serve to facilitate the injection process, as indicated by the rise in the injection probability.