Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow...Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.展开更多
A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage...A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage of magnesium,a binder and a small amount of oxidant,was used as a hydro reactive fuel.Cold water was injected into the combustion chamber as a main oxidant.A scaled-down experimental engine was tested in a direct-connect ground testing system to characterize the factors influencing the engine performance.The results show that the increasing of total water/fuel ratio,an addition of secondary water intake along the combustion chamber,a larger magnesium content in the solid propellant,a smaller primary water injection angle towards the coming main flow,and a higher primary injection pressure were all able to promote the engine performance.The maximum engine performance was obtained in test 08,and with all tests,an appropriate set of parameters and conditions for the optimum engine performance were determined展开更多
文摘Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 61350)
文摘A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage of magnesium,a binder and a small amount of oxidant,was used as a hydro reactive fuel.Cold water was injected into the combustion chamber as a main oxidant.A scaled-down experimental engine was tested in a direct-connect ground testing system to characterize the factors influencing the engine performance.The results show that the increasing of total water/fuel ratio,an addition of secondary water intake along the combustion chamber,a larger magnesium content in the solid propellant,a smaller primary water injection angle towards the coming main flow,and a higher primary injection pressure were all able to promote the engine performance.The maximum engine performance was obtained in test 08,and with all tests,an appropriate set of parameters and conditions for the optimum engine performance were determined