期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
团队成长心态如何影响团队创新?基于注意力“配置”和“构型”的研究视角
1
作者 张戌凡 张文牮 《心理科学进展》 CSSCI CSCD 北大核心 2023年第8期1389-1410,共22页
团队是组织中最重要的创新活动单元。既往研究相对忽视与“人”相关的微观因素对创新的影响。本项目从“认知的内隐理论”出发,运用追踪调查、QCA等研究方法,启动团队成长心态与团队创新的一系列研究。具体包括:(1)基于“团队过程”视角... 团队是组织中最重要的创新活动单元。既往研究相对忽视与“人”相关的微观因素对创新的影响。本项目从“认知的内隐理论”出发,运用追踪调查、QCA等研究方法,启动团队成长心态与团队创新的一系列研究。具体包括:(1)基于“团队过程”视角,检验注意力配置在团队成长心态与两种创新模式之间的中介效应;(2)探讨组织二元结构文化和团队协作质量的情境要素,以此检验心态“表达的适度性”和“过程的适度性”;(3)检验四种“注意力构型”对团队创新可能产生的“双刃剑”效应;(4)检验团队成长心态在“注意力构型”与两种创新绩效间的作用,据此验证此构念的内涵与功能。该研究的理论意义是将注意力研究转向了对其前因机制的探讨;此外,注意力构型与创新的“悖论”关系,以及团队成长心态在注意力构型与创新间的功能也为创新研究提供了较为可靠的实践意义。 展开更多
关键词 团队成长心态 团队创新 注意力配置 注意力构型
下载PDF
MAAUNet:Exploration of U-shaped encoding and decoding structure for semantic segmentation of medical image 被引量:1
2
作者 SHAO Shuo GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期418-429,共12页
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg... In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference. 展开更多
关键词 U-shaped attention network structure of MAAUNet convolutional neural network encoding-decoding structure attention mechanism medical image semantic segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部