为了实现在复杂非结构环境下对木薯叶4种主要病害的高精度检测,提出一种基于选择性注意力机制的木薯叶病害神经网络检测改进算法MAISNet(Multiattention IBN Squareplus neural network)。以V2-ResNet-101为基础网络,先使用多重注意力...为了实现在复杂非结构环境下对木薯叶4种主要病害的高精度检测,提出一种基于选择性注意力机制的木薯叶病害神经网络检测改进算法MAISNet(Multiattention IBN Squareplus neural network)。以V2-ResNet-101为基础网络,先使用多重注意力算法优化加权系数,调整特征通道的语义表达,在特征图中初步构建显著性特征;然后在残差单元之后采用实例批归一化方法来抑制特征表达中的协变量偏移,在特征图中构建出显著性语义特征,实现高质量语义特征表达;最后在残差分支中采用Squareplus激活函数替代ReLU激活函数,保持语义特征在负数域的数值分布,减少特征拟合过程中的截断误差。对比试验结果显示,经过上述改进后构建出的MAISNet-101神经网络,对4种常见木薯叶病害检测的平均准确率达到95.39%,明显优于目前主流算法EfficientNet-B5和RepVGG-B3g4等。网络提取特征的可视化分析结果表明,高质量木薯叶病害显著性语义特征,是提高木薯叶病害检测准确率的关键。所提出的MAISNet神经网络模型可以完成实际场景下木薯叶病害高精度检测。展开更多
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
文摘为了实现在复杂非结构环境下对木薯叶4种主要病害的高精度检测,提出一种基于选择性注意力机制的木薯叶病害神经网络检测改进算法MAISNet(Multiattention IBN Squareplus neural network)。以V2-ResNet-101为基础网络,先使用多重注意力算法优化加权系数,调整特征通道的语义表达,在特征图中初步构建显著性特征;然后在残差单元之后采用实例批归一化方法来抑制特征表达中的协变量偏移,在特征图中构建出显著性语义特征,实现高质量语义特征表达;最后在残差分支中采用Squareplus激活函数替代ReLU激活函数,保持语义特征在负数域的数值分布,减少特征拟合过程中的截断误差。对比试验结果显示,经过上述改进后构建出的MAISNet-101神经网络,对4种常见木薯叶病害检测的平均准确率达到95.39%,明显优于目前主流算法EfficientNet-B5和RepVGG-B3g4等。网络提取特征的可视化分析结果表明,高质量木薯叶病害显著性语义特征,是提高木薯叶病害检测准确率的关键。所提出的MAISNet神经网络模型可以完成实际场景下木薯叶病害高精度检测。
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.