期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
结合注意引导网络的弱光图像增强算法
1
作者 黄磊 黄文准 《佳木斯大学学报(自然科学版)》 CAS 2024年第1期16-20,共5页
弱光图像增强具有挑战性,不仅需要考虑亮度恢复,还需要考虑色彩失真和噪声等复杂问题。简单地调整弱光图像的亮度将不可避免的放大这些伪影。为了解决这些难题,一种带有注意引导分支的端到端弱光增强网络(attention guided low light en... 弱光图像增强具有挑战性,不仅需要考虑亮度恢复,还需要考虑色彩失真和噪声等复杂问题。简单地调整弱光图像的亮度将不可避免的放大这些伪影。为了解决这些难题,一种带有注意引导分支的端到端弱光增强网络(attention guided low light enhancement network,AGNet)被提出。AGNet由注意引导网络和弱光增强网络两部分组成。注意引导网络被用来学习弱光图像中的照度-注意映射,并将其应用于弱光增强网络,以指导图像亮度增强和去噪任务。弱光增强网络由多尺度卷积和残差块构成,通过特征金字塔结构从多个尺度来提取弱光图像中的细节和纹理特征。此外,网络中还引入了多尺度色彩矫正模块(multi-scale color recalibration module,MCRM),以进一步增强了输出图像的颜色和对比度。实验结果表明,AGNet在主流弱光数据集上(LOL-v1和LOL-v2-synthetic)不仅在客观指标上领先(两个数据集的PSNR提高了2.13/2.52),而且在主观比较上也具有优势。 展开更多
关键词 弱光图像 弱光图像增强网络 注意引导网络 多尺度特征聚合
下载PDF
结合单词-字符引导注意力网络的中文旅游文本命名实体识别 被引量:6
2
作者 西尔艾力·色提 艾山·吾买尔 +3 位作者 王路路 吐尔根·依布拉音 马喆康 买合木提·买买提 《计算机工程》 CAS CSCD 北大核心 2021年第2期39-45,共7页
传统基于词向量表示的命名实体识别方法通常忽略了字符语义信息、字符间的位置信息,以及字符和单词间的关联关系。提出一种基于单词-字符引导注意力网络(WCGAN)的中文旅游命名实体识别方法,利用单词引导注意力网络获取单词间的序列信息... 传统基于词向量表示的命名实体识别方法通常忽略了字符语义信息、字符间的位置信息,以及字符和单词间的关联关系。提出一种基于单词-字符引导注意力网络(WCGAN)的中文旅游命名实体识别方法,利用单词引导注意力网络获取单词间的序列信息和关键单词信息,采用字符引导注意力网络捕获字符语义信息和字符间的位置信息,增强单词和字符间的关联性与互补性,从而实现中文旅游文本中命名实体的识别。实验结果表明,WCGAN方法在ResumeNER和TourismNER基准数据集上的F值分别为93.491%和92.860%,相比Bi-LSTM+CRF、Char-Dense等方法识别效果更好。 展开更多
关键词 命名实体识别 字符引导注意网络 单词引导注意网络 字符语义 信息互补 位置信息
下载PDF
基于注意力引导图卷积网络的中英机器翻译模型 被引量:4
3
作者 韩雪 王章辉 张涵婷 《计算机与数字工程》 2021年第12期2476-2482,共7页
现如今,神经网络在基于句序列的机器翻译模型已占据主流地位。但在中英文互译中,仅对单语句进行翻译不仅仅丢失语义信息,还破坏繁杂的逻辑构造,并不符合当代机器翻译需求。鉴于此,提出一种新型基于注意力引导图卷积网络的机器翻译优化模... 现如今,神经网络在基于句序列的机器翻译模型已占据主流地位。但在中英文互译中,仅对单语句进行翻译不仅仅丢失语义信息,还破坏繁杂的逻辑构造,并不符合当代机器翻译需求。鉴于此,提出一种新型基于注意力引导图卷积网络的机器翻译优化模型,可通过多头注意力机制和图卷积神经网络结构的结合保留词元素特征及段落层次结构信息。为了验证基于注意力引导图卷积网络模型是否优于其他传统算法,在WMT21数据集上进行实验,结果表明各指标均达到理想效果。 展开更多
关键词 注意引导图卷积网络 机器翻译 语篇翻译 译文选择
下载PDF
融合局部动态特征的面部表情识别 被引量:4
4
作者 刘南艳 魏鸿飞 马圣祥 《计算机工程与科学》 CSCD 北大核心 2023年第5期849-858,共10页
面部表情是人类表达情感最重要的方式之一。面部表情变化受多个面部器官和面部肌肉运动的影响。为了能有效提取局部动态特征和解决面部表情部分遮挡问题,提出一种简单有效的融合局部动态特征的深度学习网络,通过构建引导注意网络,利用... 面部表情是人类表达情感最重要的方式之一。面部表情变化受多个面部器官和面部肌肉运动的影响。为了能有效提取局部动态特征和解决面部表情部分遮挡问题,提出一种简单有效的融合局部动态特征的深度学习网络,通过构建引导注意网络,利用检测到的脸部关键点来引导网络关注无遮挡的面部区域。为了强化不同表情特征之间的联系,利用局部动态特征网络,在带有时间序列的关键帧中提取如眼睛、嘴巴等关键区域的动态信息和时空信息。最后,将局部动态特征补充到整体网络中。融合后的网络在CK+、Oulu-CASIA、RAF-DB和AffectNet数据集上的精度分别为98.08%,90.59%,86.02%和61.28%,相较于其它网络的识别率均有提高。 展开更多
关键词 动态特征 面部遮挡 引导注意网络 时间序列
下载PDF
基于改进的AG-CNN的视网膜OCT图像的黄斑病变识别方法 被引量:1
5
作者 董喜超 高志军 董春游 《智能计算机与应用》 2021年第5期163-169,共7页
本文针对目前应用全局图像训练卷积神经网络可能会受到若干无关噪声区域的影响,易导致视网膜OCT图像黄斑病变识别或诊断错误等问题,提出了一种改进的注意力引导四分支卷积神经网络的视网膜OCT图像黄斑病变识别方法。采用改进注意力引导... 本文针对目前应用全局图像训练卷积神经网络可能会受到若干无关噪声区域的影响,易导致视网膜OCT图像黄斑病变识别或诊断错误等问题,提出了一种改进的注意力引导四分支卷积神经网络的视网膜OCT图像黄斑病变识别方法。采用改进注意力引导卷积神经网络框架,通过集成全局分支、局部分支和层分割分支构成融合分支,利用注意力热图对重要区域进行掩膜和训练,减少视网膜OCT图像噪声的干扰和黄斑病变识别错误率,通过与VGG16和IDL2种方法在公开数据集上进行了实验验证比较。结果表明,文中方法在视网膜OCT图像数据集上对于识别准确度和识别性能的提升具有显著性的作用。 展开更多
关键词 视网膜OCT图像 黄斑病变 改进注意引导卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部