期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于视觉关注度与审美偏好的城市景观元素感知特征研究 被引量:9
1
作者 邱瑶 罗涛 +2 位作者 王艳云 范小利 赵冲 《中国园林》 CSCD 北大核心 2023年第6期82-87,共6页
视觉关注度与审美偏好是衡量城市景观元素感知属性的2个独立变量。这2个概念往往易被混淆,且鲜有研究探究两者之间的关系,并甄选出既受人关注又受人喜爱的景观元素。通过将城市景观照片作为测试媒介,结合眼动分析法与审美偏好测试,量化... 视觉关注度与审美偏好是衡量城市景观元素感知属性的2个独立变量。这2个概念往往易被混淆,且鲜有研究探究两者之间的关系,并甄选出既受人关注又受人喜爱的景观元素。通过将城市景观照片作为测试媒介,结合眼动分析法与审美偏好测试,量化分析了城市景观元素的视觉关注度与审美偏好。结果显示:1)相比自然景观元素(山体、树林、水体、草地),人工景观元素(现代建筑、传统建筑、桥梁、道路)更易受到关注;2)不同自然景观元素对审美偏好的贡献差异显著,水体审美偏好显著,而山体偏好表现负向;3)在易受到关注的各类景观元素中,传统建筑、桥梁等偏好显著,现代建筑偏好表现负向。该研究结果可为城市景观规划设计实践提供理论参考。 展开更多
关键词 风景园林 景观偏好 景观认知 注视热力点 景观照片
下载PDF
Sentiment classification model for bullet screen based on self-attention mechanism 被引量:2
2
作者 ZHAO Shuxu LIU Lijiao MA Qinjing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期479-488,共10页
With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can a... With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields. 展开更多
关键词 bullet screen text sentiment classification self-attention mechanism visual analysis hot events control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部