This paper describes the conductivity modifications induced by heavy ion implantation in pyrolysis products obtained by thermal treatment of polyacrylonitrile (PAN) thin films at temperatures of 435℃ (PAN435) and...This paper describes the conductivity modifications induced by heavy ion implantation in pyrolysis products obtained by thermal treatment of polyacrylonitrile (PAN) thin films at temperatures of 435℃ (PAN435) and 750℃ (PAN750) under vacuum. Ionic species having different chemical reactivities such as Kr, As, Cl. and F ions were utilized to allow interpretation of the conductivity' data either in terms of implantation induced molecular rearrangements or in terms of specific chemical doping effects. The temperature dependence of conductivity in the range between 25-3000C followed nearly a simple activation conduction relationship from which the temperature coefficients of resistivity (ct) were determined. In this temperature range, PAN750 provided the smallest α value compared with ion implanted PAN750 or with products obtained at the lower pyrolysis temperature. However. the corresponding lowest rate of conductivity change with temperatures (0.49%/℃) obtained in this study far exceeds the specification value required for thin film resistor applications (〈 0.1%/℃).展开更多
文摘This paper describes the conductivity modifications induced by heavy ion implantation in pyrolysis products obtained by thermal treatment of polyacrylonitrile (PAN) thin films at temperatures of 435℃ (PAN435) and 750℃ (PAN750) under vacuum. Ionic species having different chemical reactivities such as Kr, As, Cl. and F ions were utilized to allow interpretation of the conductivity' data either in terms of implantation induced molecular rearrangements or in terms of specific chemical doping effects. The temperature dependence of conductivity in the range between 25-3000C followed nearly a simple activation conduction relationship from which the temperature coefficients of resistivity (ct) were determined. In this temperature range, PAN750 provided the smallest α value compared with ion implanted PAN750 or with products obtained at the lower pyrolysis temperature. However. the corresponding lowest rate of conductivity change with temperatures (0.49%/℃) obtained in this study far exceeds the specification value required for thin film resistor applications (〈 0.1%/℃).