In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbul...In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.展开更多
At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order ...At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order to eliminate the fluctuations and reduce problems, taking start pump, connect pump test under pressure in the water injection station installed the rotor frequency control system Changqing oil field developed. During the experiment, by progressively increasing the pressure pump to verify start pump with pressure feasibility test, the result shows when the pressure in the 0-25MPa pressure start and connect pump can be realized, and forecast the maximum pressure of the current start of the station with pressure pump. Start pump with pressure achieve the elimination of pressure fluctuations, provide the prerequisites about realizeing stable water injection pressure, and ultimately realize oil field water injection station to be automatic water injection laid a foundation.展开更多
To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centri- fugal pump with complex impeller is numerically simulated under different conditions. The RNG r-e tu...To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centri- fugal pump with complex impeller is numerically simulated under different conditions. The RNG r-e turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction be- tween impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pres- sure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency compo- sition.展开更多
As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes e...As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes.展开更多
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
基金Project supported by the Priority Academic Development Program of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0680) supported by Postgraduate Innovation Foundation of Jiangsu Province, ChinaProject(12JDG082) supported by the Advanced Talent Foundation of Jiangsu University, China
文摘In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.
文摘At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order to eliminate the fluctuations and reduce problems, taking start pump, connect pump test under pressure in the water injection station installed the rotor frequency control system Changqing oil field developed. During the experiment, by progressively increasing the pressure pump to verify start pump with pressure feasibility test, the result shows when the pressure in the 0-25MPa pressure start and connect pump can be realized, and forecast the maximum pressure of the current start of the station with pressure pump. Start pump with pressure achieve the elimination of pressure fluctuations, provide the prerequisites about realizeing stable water injection pressure, and ultimately realize oil field water injection station to be automatic water injection laid a foundation.
基金supported by the National Natural Science Foundation of China granted No.51276172
文摘To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centri- fugal pump with complex impeller is numerically simulated under different conditions. The RNG r-e turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction be- tween impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pres- sure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency compo- sition.
基金supported by the National Key Technology R&G Program(Project No.2012BAF03B01-X)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)
文摘As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes.