A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect...A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.展开更多
In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study des...In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.展开更多
Centrifugal pumps are being widely used in many industrial and commercial applications.Many of these pumps are being operated at constant speed but could provide energy savings through adjustable speed operations.The ...Centrifugal pumps are being widely used in many industrial and commercial applications.Many of these pumps are being operated at constant speed but could provide energy savings through adjustable speed operations.The purpose of this study was to get the energy saving rates of the multistage centrifugal pump with variable speed conditions.For this investigation an experimental set up of variable flow and pressure system was made to get energy saving rates and numerical analyses are applied to validate the pump performance.The energy saving and therefore the cost saving depends on the specific duty cycle of which the machine operates.Duty cycle is the proportion of time during which a component,device and system is operated.The duty cycle segmented into different flow rates and weighting the average value for each segment by the interval time.The system was operated at 50%or less of the pump capacity.The input power of the system was carried out by pump characteristics curve of each operating point.The energy consumption was done by the product of specific duty cycle and the input power of the system for constant speed and variable speed drive operation.The total energy consumed for constant speed drive pump was 75,770 k W.hr and for variable speed drive pump was 31,700 k W.hr.The total energy saving of the system was 44,070 k W.hr or 58.16%annually.So,this paper suggests a method of implementing an energy saving on variable-flow and pressure system of the multistage centrifugal pump.展开更多
基金Project(2014CB046403)supported by the National Basic Research Program of ChinaProject(2013BAF07B01)supported by the National Key Technology R&D Program of China
文摘A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.
文摘In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.
基金supported by the Korea government through the Korea institute of Energy Technology Evaluation and Planning(KETEP)The grant number is 20132010101870 for the Promotion of Science
文摘Centrifugal pumps are being widely used in many industrial and commercial applications.Many of these pumps are being operated at constant speed but could provide energy savings through adjustable speed operations.The purpose of this study was to get the energy saving rates of the multistage centrifugal pump with variable speed conditions.For this investigation an experimental set up of variable flow and pressure system was made to get energy saving rates and numerical analyses are applied to validate the pump performance.The energy saving and therefore the cost saving depends on the specific duty cycle of which the machine operates.Duty cycle is the proportion of time during which a component,device and system is operated.The duty cycle segmented into different flow rates and weighting the average value for each segment by the interval time.The system was operated at 50%or less of the pump capacity.The input power of the system was carried out by pump characteristics curve of each operating point.The energy consumption was done by the product of specific duty cycle and the input power of the system for constant speed and variable speed drive operation.The total energy consumed for constant speed drive pump was 75,770 k W.hr and for variable speed drive pump was 31,700 k W.hr.The total energy saving of the system was 44,070 k W.hr or 58.16%annually.So,this paper suggests a method of implementing an energy saving on variable-flow and pressure system of the multistage centrifugal pump.