Using data collected by an Acoustic Doppler Current Profiler (ADCP) on a research cruise in April 2010 in the eastern Indian Ocean, the vertical cun'ent structures surrounding the Andaman-Nicobar Submarine Ridge (...Using data collected by an Acoustic Doppler Current Profiler (ADCP) on a research cruise in April 2010 in the eastern Indian Ocean, the vertical cun'ent structures surrounding the Andaman-Nicobar Submarine Ridge (ANSR) are analyzed to investigate the hydrographic responses to the topography in this region. The results show that the topography of ANSR can induce internal waves around the submarine ridge that have a maximum current velocity of 1 m s 1 The spatial struc- ture of the turbulent kinetic energy (TKE) and shear in this region during 2010 is investigated using the high-resolution Princeton Ocean Model (POM) forced by the satellite-based Advanced Scatterometer (ASCAT) winds including the tide, The results show that the model successfully simulates the internal waves around the ANSR. Numerical experiments further indicate that both the topography and tide play an important role in the gen- eration of the internal waves in this region.展开更多
We have developed a 202-year tree-ring width chronology of Shensi fir(Abies chensiensis) growing in an open canopy forest at the treeline of the eastern Qinling Mountains. Climate response analyses revealed that the r...We have developed a 202-year tree-ring width chronology of Shensi fir(Abies chensiensis) growing in an open canopy forest at the treeline of the eastern Qinling Mountains. Climate response analyses revealed that the ring width of Shensi fir trees is primarily controlled by the range of temperature from February–June. The regression model that we used for statistical temperature reconstruction passed the leave-one-out cross-validation used in dendroclimatology, resulting in a quality-controlled February–June reconstruction for the eastern Qinling Mountains. The model accounts for 36.7% of the instrumental temperature variance during the period of 1960–2012. Warm springs and early summers occurred during AD 1870–1873, 1909–1914, 1927–1958 and 1997–2012, while the periods of AD 1874–1908, 1915–1926 and 1959–1996 were relatively cold. Spatial climate correlation analyses with gridded land surface data revealed that our temperature reconstruction contains a strong regional temperature signal for central China. The linkages of ourtemperature reconstruction with sea surface temperature in the Atlantic and Pacific oceans suggest the connection of regional temperature variations to large-scale ocean–atmosphere–land circulation. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction also shows that there is a relationship between extremes in spring and early summer temperature and anomalous atmospheric circulation in the Qinling Mountains. Overall, our study provides reliable information for the research of past temperature variability in the Qinling Mountains, China.展开更多
基金supported by the Ministry of Science and Technology of the People's Republic of China(MOST)(Grant No.2011CB403504)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos. KZCX2-EW-208 and KZCX2-YW-Q11-02)+1 种基金the National Natural Science Foundation of China(Grant No.41076009)100 Talent Program of the Chinese Academy of Sciences
文摘Using data collected by an Acoustic Doppler Current Profiler (ADCP) on a research cruise in April 2010 in the eastern Indian Ocean, the vertical cun'ent structures surrounding the Andaman-Nicobar Submarine Ridge (ANSR) are analyzed to investigate the hydrographic responses to the topography in this region. The results show that the topography of ANSR can induce internal waves around the submarine ridge that have a maximum current velocity of 1 m s 1 The spatial struc- ture of the turbulent kinetic energy (TKE) and shear in this region during 2010 is investigated using the high-resolution Princeton Ocean Model (POM) forced by the satellite-based Advanced Scatterometer (ASCAT) winds including the tide, The results show that the model successfully simulates the internal waves around the ANSR. Numerical experiments further indicate that both the topography and tide play an important role in the gen- eration of the internal waves in this region.
基金supported by the Basic Research Operating Expenses of the Central-level Non-profit Research Institutes of China (IDM201105)the Open Foundation of MOE Key Laboratory of Western China's Environmental System, Lanzhou Universitythe Fundamental Research Funds for the Central Universities (lzujbky-2011-t02)
文摘We have developed a 202-year tree-ring width chronology of Shensi fir(Abies chensiensis) growing in an open canopy forest at the treeline of the eastern Qinling Mountains. Climate response analyses revealed that the ring width of Shensi fir trees is primarily controlled by the range of temperature from February–June. The regression model that we used for statistical temperature reconstruction passed the leave-one-out cross-validation used in dendroclimatology, resulting in a quality-controlled February–June reconstruction for the eastern Qinling Mountains. The model accounts for 36.7% of the instrumental temperature variance during the period of 1960–2012. Warm springs and early summers occurred during AD 1870–1873, 1909–1914, 1927–1958 and 1997–2012, while the periods of AD 1874–1908, 1915–1926 and 1959–1996 were relatively cold. Spatial climate correlation analyses with gridded land surface data revealed that our temperature reconstruction contains a strong regional temperature signal for central China. The linkages of ourtemperature reconstruction with sea surface temperature in the Atlantic and Pacific oceans suggest the connection of regional temperature variations to large-scale ocean–atmosphere–land circulation. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction also shows that there is a relationship between extremes in spring and early summer temperature and anomalous atmospheric circulation in the Qinling Mountains. Overall, our study provides reliable information for the research of past temperature variability in the Qinling Mountains, China.