Seven compounds (1–7) were identified from the cultivation of the endophytic fungus Exophiala oligosperma (EN-21) that was isolated from the inner tissue of the marine red alga Laurencia similis. Their structures wer...Seven compounds (1–7) were identified from the cultivation of the endophytic fungus Exophiala oligosperma (EN-21) that was isolated from the inner tissue of the marine red alga Laurencia similis. Their structures were identified with spectroscopic and chemical methods as 2-phenoxynaphthalene (1), (2S, 3R, 4E, 8E)-1-O-β-D-glucopyranosyl-3-hydroxy-2-[(R)-2′-hydroxyoctadecanoyl] amino-9-methyl-4, 8-octadeca-diene (2), (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol (3), (22E, 24R)-3β, 5α, 9α-trihydroxy- ergosta-7, 22-dien-6-one (4), (22E, 24R)-5α, 6α-epoxy-ergosta-8, 22-dien-3β, 7α-diol (5), (22E, 24R)- ergosta-4, 6, 8(14), 22-tetraen-3-one (6), and euphorbol (7). This paper reports for the first time the chemical constituents of fungus Exophiala oligosperma and the discovery of compound 1 as a natural product from the fungus.展开更多
A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorp...A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorption coefficient. The modified model performed well using in-situ data from the northern South China Sea, and the results were reliable and accurate. The relative errors of the size-fractioned chlorophyll-a concentration for each size class were: micro-:21%, nano-:41%, pico-:26%, and nano+pico:23%. The model was then applied on ocean color remote sensing data to examine the distribution and variation of phytoplankton size classes in northern South China Sea on a large scale.展开更多
基金Supported by the Programs from the Ministry of Science and Technology of China (Nos.2007AA09Z446,2010CB833802)the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-211-04)
文摘Seven compounds (1–7) were identified from the cultivation of the endophytic fungus Exophiala oligosperma (EN-21) that was isolated from the inner tissue of the marine red alga Laurencia similis. Their structures were identified with spectroscopic and chemical methods as 2-phenoxynaphthalene (1), (2S, 3R, 4E, 8E)-1-O-β-D-glucopyranosyl-3-hydroxy-2-[(R)-2′-hydroxyoctadecanoyl] amino-9-methyl-4, 8-octadeca-diene (2), (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol (3), (22E, 24R)-3β, 5α, 9α-trihydroxy- ergosta-7, 22-dien-6-one (4), (22E, 24R)-5α, 6α-epoxy-ergosta-8, 22-dien-3β, 7α-diol (5), (22E, 24R)- ergosta-4, 6, 8(14), 22-tetraen-3-one (6), and euphorbol (7). This paper reports for the first time the chemical constituents of fungus Exophiala oligosperma and the discovery of compound 1 as a natural product from the fungus.
基金Supported by the National Natural Science Foundation of China (Nos.U0933005,41076014,40906021,41176035)the National High Technology Research and Development Program of China (863 Program)(No.2007AA092001-02)
文摘A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorption coefficient. The modified model performed well using in-situ data from the northern South China Sea, and the results were reliable and accurate. The relative errors of the size-fractioned chlorophyll-a concentration for each size class were: micro-:21%, nano-:41%, pico-:26%, and nano+pico:23%. The model was then applied on ocean color remote sensing data to examine the distribution and variation of phytoplankton size classes in northern South China Sea on a large scale.