期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
西太平洋洋陆板块碰撞 被引量:3
1
作者 袁学诚 《海洋地质与第四纪地质》 CAS CSCD 北大核心 2014年第6期41-48,共8页
根据地震震中的空间分布判断,西太平洋板块除了沿日本海沟斜向向黑龙江板块大陆下俯冲外,别的地区大洋板块均近垂直向下回流,未向大陆斜向俯冲。究其原因,可能是这些地区的地幔内所存在的大范围柔性低速岩石圈阻挡了大洋板块的斜向俯冲... 根据地震震中的空间分布判断,西太平洋板块除了沿日本海沟斜向向黑龙江板块大陆下俯冲外,别的地区大洋板块均近垂直向下回流,未向大陆斜向俯冲。究其原因,可能是这些地区的地幔内所存在的大范围柔性低速岩石圈阻挡了大洋板块的斜向俯冲。中国东部岩石圈的剧变不是太平洋板块俯冲到大陆岩石圈所引起的效应,它的构造动力需要重新认识。 展开更多
关键词 洋陆碰撞 地幔低速区 西太平
下载PDF
论“低温榴辉岩套”——洋-陆碰撞带的典型标志 被引量:1
2
作者 韩宗珠 印萍 韩国讯 《海洋科学》 CAS CSCD 北大核心 1993年第3期31-35,共5页
本文提出了低温榴辉岩套的特征及鉴别标志,并论述了其空间分布、岩石组、合、成岩条件及其地质意义。
关键词 榴辉岩 蓝片岩 -碰撞 岩套
下载PDF
印尼苏门答腊岛巴东地区埃达克质岩地球化学特征和构造环境 被引量:3
3
作者 朱章显 杨振强 胡鹏 《中国矿业》 北大核心 2015年第5期73-80,85,共9页
根据苏门答腊岛巴东地区的岩石化学分析数据与典型埃达克岩进行对比,本文讨论其地球化学特征及其大地构造环境意义。对比结果表明:该地区的埃达克质岩微量元素特征为低Sr含量(一般为3.88×10-6~83.6×10-6),低重稀土... 根据苏门答腊岛巴东地区的岩石化学分析数据与典型埃达克岩进行对比,本文讨论其地球化学特征及其大地构造环境意义。对比结果表明:该地区的埃达克质岩微量元素特征为低Sr含量(一般为3.88×10-6~83.6×10-6),低重稀土元素Y含量(≤20×10-6)和低Yb含量(≤1.9×10-6),低Sr/Y比值(1.09~18.55)。在微量元素蛛网图上有 Th、Ba正异常峰和强烈的 Nb、Ta、Ti等元素负异常。稀土元素La/Yb比值为1.28~35.46,在REE元素配分曲线模式图上显示LREE富集和不富集两种模式,属于C-型和O-型埃达克岩。该地区埃达克质岩的大地构造环境位于洋-陆碰撞带附近的活动大陆边缘火山弧带中,岩浆来源于俯冲板片局部熔融叠加地幔楔的局部熔融和混染(MASH)区。埃达克岩的分布区域与矽卡岩型铜-金矿、铁矿和浅成热泉型金矿成矿带分布相一致,具有重要的指示意义。 展开更多
关键词 埃达克质岩 -碰撞 缘火山弧 矽卡岩型铜-金矿带
下载PDF
Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples 被引量:27
4
作者 ZHU DiCheng WANG Qing ZHAO ZhiDan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第6期1040-1056,共17页
Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing tem... Based on the main driving force of plate motion(the slab pull force generated by the descent of the oceanic plate in subduction zones) and the three primary mechanisms for magma generation(adding fluid, increasing temperature, and decreasing pressure), the continent-continent collisional process has been divided into three stages, including initial collision, ongoing collision, and tectonic transition. These stages are characterized by normal calc-alkaline andesitic magma(dehydration of the oceanic crust to release fluids), the migration of calc-alkaline magma toward the trench(dehydration of the oceanic crust or an increase in temperature) or small-scale crust-derived peraluminous magma(heat from intra-crustal shearing), and extensive magmatism with compositional diversity induced by slab break-off(increasing temperature and decreasing pressure), respectively.On the basis of the obtained age of slab break-off, the timing of the initial continent-continent collision can be quantitatively back-dated using the convergence rate, depth of slab break-off, and subduction angle. The spatio-temporal migration of the magmatic activity of the Gangdese Batholith, the onset of magmatic flare-up, and the increase of magma temperature at 52–51Ma documented by the volcanic rocks of the Linzizong Pana Formation were most likely the result of the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere at approximately 53 Ma. This proposed age of slab break-off suggests that the initial India-Asia collision likely occurred at approximately 55–54 Ma, which is consistent with the collision ages constrained by other abundant geological data(60–55 Ma). This magmatic method has been applied to the Bitlis orogenic belt in southern Turkey in the Arabia-Eurasia continental collision zone, yielding an age range of approximately 29–22 Ma for the initial Arabia-Asia continental collision that is close to the collision ages recently obtained by apatite fission-track dating(approximately20 Ma) and regional tectonic shortening(approximately 27 Ma). The intense folding of the Upper Cretaceous and the angular unconformity between the overlying Linzizong volcanic rocks in the southern Lhasa Terrane(90.69 Ma) are not related to the initial continental collision between India and Asia, but can be interpreted as the consequences of the strong coupling between the hot and young subducting oceanic crust immediately south of the spreading ridge and the overriding lithosphere or the subduction of the Neo-Tethys oceanic plateaux or seamounts. The tectonic event documented by the angular unconformity between the Linzizong Dianzhong Formation and the Nianbo Formation lasted approximately 3 Ma and likely marks the initial India-Asia collision. The significant deceleration of the Indian continent at approximately 51 Ma can be attributed to the disappearance of the slab pull force in the subduction zone due to the break-off of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere. The descent of the eclogitized lower crust of the northern Indian continent provides the main driving force for the current northward motion of Indian plate. The weak deformation of the lithospheric plate in the overriding plate of the India-Asia collisional zone between 60 and 40 Ma can be attributed to the high-angle subduction related to the rollback of the Yarlung-Zangbo Neo-Tethyan oceanic lithosphere after the initial India-Asia continental collision, the presence of the thick crust and high elevation on the southern margin of the Lhasa Terrane, and the decoupling between the mid-upper and lower crust and between the lower crust and lithospheric mantle of the Indian continent. 展开更多
关键词 Magmatic record Slab break-off Timing of initial collision India-Asia collision Tethyan orogenic belt
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部