期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
太原台记录的长周期地幔洛夫波 G_2与 G_3波
1
作者 张曼丽 《华北地震科学》 北大核心 1992年第2期91-93,共3页
本文介绍了太原台近几年由长周期763地震仪记录到的长周期地幔勒夫波G_2与G_3。该震相为沿上地幔顶部传播的勒夫波。其记录特征为周期长,大约50~70秒。G_2波约50秒左右,G_3波为70秒左右,G_2振幅大于G_3。太原台所记到G波的地震M_s≥7.... 本文介绍了太原台近几年由长周期763地震仪记录到的长周期地幔勒夫波G_2与G_3。该震相为沿上地幔顶部传播的勒夫波。其记录特征为周期长,大约50~70秒。G_2波约50秒左右,G_3波为70秒左右,G_2振幅大于G_3。太原台所记到G波的地震M_s≥7.0。当M_3≥8.0时更为显著,所记的地震大多发生在阿留申群岛、汤加群岛一带。计算该震相的平均速度V_(G2)=4.4km/s,Vn3=4.4km/s。关于它的成因,有关专家认为可能是地震发生时大量岩块崩裂错动的反应。 展开更多
关键词 长周期 地震仪 地幔 洛夫波 地震台
下载PDF
F-K域三层对称模型洛夫型导波频散分析 被引量:10
2
作者 任亚平 李德春 亢永敢 《煤田地质与勘探》 CAS CSCD 北大核心 2009年第1期69-71,共3页
导波(分瑞利型和洛夫型2种)在波导层中传播时,其能量持续时间长,而且传播过程中携带着波导层的结构信息。基于多道分析的F-K方法(频率波数域二维傅立叶变换),分析研究了3层对称模型中的洛夫型导波的频散特性,计算了理论频散曲线,并据此... 导波(分瑞利型和洛夫型2种)在波导层中传播时,其能量持续时间长,而且传播过程中携带着波导层的结构信息。基于多道分析的F-K方法(频率波数域二维傅立叶变换),分析研究了3层对称模型中的洛夫型导波的频散特性,计算了理论频散曲线,并据此合成了特定频率的导波记录。通过对合成记录的F-K域分析,获得了理论模型的速度参数。从分析结果来看,速度参数与理论合成参数相一致,说明F-K方法可作为导波的频散分析。 展开更多
关键词 导波 频散 F—K 洛夫波
下载PDF
MEASURING AND LOCATING ZONES OF CHAOS AND IRREGULARITY
3
作者 GARNER David Matthew LING Bingo Wing-Kuen 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第3期494-506,共13页
The new measures computed here are the spectral detrended fluctuation anatysls (sDFA) and spectral multi-taper method (sMTM). sDFA applies the standard detrended fluctuation analysis (DFA) algorithm to power spe... The new measures computed here are the spectral detrended fluctuation anatysls (sDFA) and spectral multi-taper method (sMTM). sDFA applies the standard detrended fluctuation analysis (DFA) algorithm to power spectra, sMTM exploits the minute increases in the broadband response, typical of chaotic spectra approaching optimal values. The authors chose the Brusselator, Lorenz, and Duffing as the proposed models to measure and locate chaos and severe irregularity. Their series of chaotic parametric responses in short time-series is advantageous. Where cycles have only a limited number of slow oscillations such as for systems biology and medicine. It is difficult to create, locate, or monitor chaos. From 50 linearly increasing starting points applied to the chaos target function (CTF); the mean percentage increases in Kolmogorov-Sinai entropy (KS-Entropy) for the proposed chosen models; and p-values when the models were compared statistically by Kruskal-Wallis and ANOVA1 test with distributions assumed normal are Duffing (CTF: 31%: p 〈0.03); Lorenz (CTF: 2%: p 〈0.03), and I3russelator (CTF: 8%: p 〈0.01). Principal component analysis (PCA) is applied to assess the significance of the objective functions for tuning the chaotic response. From PCA the conclusion is that CTF is the most beneficial objective function overall delivering the highest increases in mean KS-Entropy. 展开更多
关键词 CHAOS ENTROPY optimization signal processing systems biology.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部