期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于优势积累的选拔机制与发文率差异 被引量:2
1
作者 林啸宇 《科学学研究》 CSSCI 北大核心 2003年第5期470-474,共5页
用中国植物生理学和美国社会学期刊的发文数据对洛特卡规律进行了验证,并设计了一个基于概率优势积累选拔机制的仿真模型,以模拟发文率差异的形成过程。模拟的结果与理论预测和经验数据有较好的吻合。
关键词 科学计量学 积累优势 仿真 选拔机制 科学生产率 洛特卡规律 发文数据 发文率
下载PDF
EXTENDED MONTE CARLO LOCALIZATION ALGORITHM FOR MOBILE SENSOR NETWORKS 被引量:1
2
作者 Wang Weidongx Zhu Qingxin 《Journal of Electronics(China)》 2008年第6期746-760,共15页
A real-world localization system for wireless sensor networks that adapts for mobility and irregular radio propagation model is considered. The traditional range-based techniques and recent range-free localization sch... A real-world localization system for wireless sensor networks that adapts for mobility and irregular radio propagation model is considered. The traditional range-based techniques and recent range-free localization schemes are not well competent for localization in mobile sensor networks, while the probabilistic approach of Bayesian filtering with particle-based density representations provides a comprehensive solution to such localization problem. Monte Carlo localization is a Bayesian filtering method that approximates the mobile node's location by a set of weighted particles. In this paper, an enhanced Monte Carlo localization algorithm-Extended Monte Carlo Localization (Ext-MCL) is proposed, i.e., the traditional Monte Carlo localization algorithm is improved and extended to make it suitable for the practical wireless network environment where the radio propagation model is irregular. Simulation results show the proposal gets better localization accuracy and higher localizable node number than previously proposed Monte Carlo localization schemes not only for ideal radio model, but also for irregular one. 展开更多
关键词 Monte Carlo Localization (MCL) Radio propagation model Degree of irregularity Mobile sensor networks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部