Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
Aim To study wind tunnel test data interpolation methods for flight vehicle with aerodynamic axial asymmetry. Methods For different body aerodynamic roll angles, proper wind tunnel test schemes were selected and ...Aim To study wind tunnel test data interpolation methods for flight vehicle with aerodynamic axial asymmetry. Methods For different body aerodynamic roll angles, proper wind tunnel test schemes were selected and trigonometric series were used for aerodynamic interpolation. Results and Conclusion A simple and effective scheme for wind tunnel test and an accurate aerodynamic interpolation method are developed with satisfactory results.展开更多
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes...Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.展开更多
Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pos...Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.展开更多
Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
Voids are one of the major defects in ball grid array (BGA) solder joints due to a large amount of outgassing flux that gets entrapped during reflow. X-ray nondestructive machines are used to make voids visible ...Voids are one of the major defects in ball grid array (BGA) solder joints due to a large amount of outgassing flux that gets entrapped during reflow. X-ray nondestructive machines are used to make voids visible as lighter areas inside the solder joints in X-ray images for detection However, it has always been difficult to analyze this problem automatically because of some challenges such as noise, inconsistent lighting and void-like artifacts. This study realized accurate extraction and automatic a-nalysis of void defects in solder joints by adopting a technical proposal, in which Otsu algorithm was used to segment solder balls and void defects were extracted through opening and closing operations and top-hat transformation in mathematical mor-phology. Experimental results show that the technical proposal mentioned here has good robustness and can be applied in the detection of voids in BGA solder joints.展开更多
Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was ...Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.展开更多
[Objective] Camellia oleifera Abel is a typical woody oil plant in China and it has many functional components. Since it was first found in 1980, Basilepta melanopus Lefevre has become the pest with outbreak area, whi...[Objective] Camellia oleifera Abel is a typical woody oil plant in China and it has many functional components. Since it was first found in 1980, Basilepta melanopus Lefevre has become the pest with outbreak area, which makes the yield and quality of camellia seed oil suffer great losses. The aim was to provide refer- ences for the field damages and prediction of Basilepta melanopus Lefevre based on severity of damage and the actual need for prediction of B. melanopus. [Meth- ods] The investigation was carried out to study the average number of wormholes in damaged leaves, average number of fruit per branch and leaf damage rate caused by B. melanopus using point-survey systematically at Yong'an Town of Changsha, Hunan Province from early May to middle June in 2014. Six functions were used to find the optimal model through fitting to calculate the threshold of mean wormhole number. [Results] The cubic equations had the best effects in fitting the 3 pairs of variables of average wormhole number and camellia fruit, camellia fruit and leaf damage rate, and wormhole number and leaf damage rate, and the variance analy- sis reached the extreme significant difference (P〈0.05). [Conclusion] Based on these mathematical models, the threshold of wormhole number is 5.01 per leaf.展开更多
Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had be...Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.展开更多
To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models...To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.展开更多
After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of n...After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of nucleus submarine.These design were conducted using a U.Langefors and B.Kihlstrom theory.展开更多
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by...During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.展开更多
A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culve...A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.展开更多
In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow aroun...In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.展开更多
The central extension of the (1+1)-dimensional Poincaré algebra by including fermionic charges which obey not supersymmetric algebra, but a special graded algebra containing in the right hand side a central eleme...The central extension of the (1+1)-dimensional Poincaré algebra by including fermionic charges which obey not supersymmetric algebra, but a special graded algebra containing in the right hand side a central element only is obtained. The corresponding theory being the fermionic extension of the lineal gravity is proposed. We considered the algebra of generators, the field transformations and found Lagrangian and equation of motion, then we derived the Casimir operator and obtained the con- stant black hole mass.展开更多
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.
文摘Aim To study wind tunnel test data interpolation methods for flight vehicle with aerodynamic axial asymmetry. Methods For different body aerodynamic roll angles, proper wind tunnel test schemes were selected and trigonometric series were used for aerodynamic interpolation. Results and Conclusion A simple and effective scheme for wind tunnel test and an accurate aerodynamic interpolation method are developed with satisfactory results.
文摘Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method.
基金supported by the National Natural Science Foundation of China(No. 41074099)
文摘Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
基金National Science and Technology Major Project of the Ministry of Science And Technology of China(No.2013YQ240803)Shanxi Programs for Science and Technology Development(Nos.20140321010-02,201603D121040-1)Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province(No.2013063)
文摘Voids are one of the major defects in ball grid array (BGA) solder joints due to a large amount of outgassing flux that gets entrapped during reflow. X-ray nondestructive machines are used to make voids visible as lighter areas inside the solder joints in X-ray images for detection However, it has always been difficult to analyze this problem automatically because of some challenges such as noise, inconsistent lighting and void-like artifacts. This study realized accurate extraction and automatic a-nalysis of void defects in solder joints by adopting a technical proposal, in which Otsu algorithm was used to segment solder balls and void defects were extracted through opening and closing operations and top-hat transformation in mathematical mor-phology. Experimental results show that the technical proposal mentioned here has good robustness and can be applied in the detection of voids in BGA solder joints.
基金Project(42177143) supported by the National Natural Science Foundation of ChinaProject(2020JDJQ0011) supported by the Science Foundation for Distinguished Young Scholars of Sichuan Province,China。
文摘Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.
文摘[Objective] Camellia oleifera Abel is a typical woody oil plant in China and it has many functional components. Since it was first found in 1980, Basilepta melanopus Lefevre has become the pest with outbreak area, which makes the yield and quality of camellia seed oil suffer great losses. The aim was to provide refer- ences for the field damages and prediction of Basilepta melanopus Lefevre based on severity of damage and the actual need for prediction of B. melanopus. [Meth- ods] The investigation was carried out to study the average number of wormholes in damaged leaves, average number of fruit per branch and leaf damage rate caused by B. melanopus using point-survey systematically at Yong'an Town of Changsha, Hunan Province from early May to middle June in 2014. Six functions were used to find the optimal model through fitting to calculate the threshold of mean wormhole number. [Results] The cubic equations had the best effects in fitting the 3 pairs of variables of average wormhole number and camellia fruit, camellia fruit and leaf damage rate, and wormhole number and leaf damage rate, and the variance analy- sis reached the extreme significant difference (P〈0.05). [Conclusion] Based on these mathematical models, the threshold of wormhole number is 5.01 per leaf.
文摘Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.
基金Project(2017T001-G)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(2017YFB1201204)supported by the National Key Research and Development Program of China+2 种基金Project(U1534206)supported by the National Natural Science Foundation of ChinaProject(2015CX006)supported by the Innovation-driven Plan in Central South University,ChinaProject(2017zzts521)supported by the Fundamental Research Funds for the Central Universities,China
文摘To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.
文摘After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of nucleus submarine.These design were conducted using a U.Langefors and B.Kihlstrom theory.
文摘During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.
文摘A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.
文摘In this paper,the wind load on an arc-shaped canopy roof was studied with numerical wind tunnel method(NWTM) .Three-dimensional models were set up for the canopy roof with opened or closed skylights.The air flow around the roof under wind action from three directions was analysed respectively.Wind pressure coefficients on the canopy roof were determined by NWTM.The results of NWTM agreed well with those of wind tunnel test for the roof with opened skylights,which verified the applicability and rationality of NWTM.The effect of the closure of skylights was then investigated with NWTM.It was concluded that the closure of the skylights may increase the wind suction on the top surface of the roof greatly and should be considered in the structure design of the canopy roof.
文摘The central extension of the (1+1)-dimensional Poincaré algebra by including fermionic charges which obey not supersymmetric algebra, but a special graded algebra containing in the right hand side a central element only is obtained. The corresponding theory being the fermionic extension of the lineal gravity is proposed. We considered the algebra of generators, the field transformations and found Lagrangian and equation of motion, then we derived the Casimir operator and obtained the con- stant black hole mass.