The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to t...The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.展开更多
This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the c...This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the control conditions in this method on the basis of basin terrain classification. The objective of this method is to solve the question of a small-scale water conservancy project’s influence on flood forecasting precision, which can be used in the basin with multitudinous small reservoirs in the upstream region and can help estimate non-runoff data for small reservoir runoff. Taking the 20060826 flood as an example, the flood detention quantity of 19 small reservoirs is modeled. The results show that the absolute error of the total flood detention quantity is 0.2×10 4 m 3 , and the relative error is 0.12%. The flood detention quantity of small reservoirs in the entire basin is then modeled using this method, and the primary flood forecasting model is adjusted. After adjustment, the precision is significantly improved, with the relative error decreasing from 31.8% to 10.1%.展开更多
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC08700)the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Natural Science Foundation of China (No.90815019)
文摘The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50809010, 50909012, 51079014)the National Key Technology R&D Program during the 11th Five-Year Plan Period of China (Grant No. 2007BAB28B01)
文摘This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the control conditions in this method on the basis of basin terrain classification. The objective of this method is to solve the question of a small-scale water conservancy project’s influence on flood forecasting precision, which can be used in the basin with multitudinous small reservoirs in the upstream region and can help estimate non-runoff data for small reservoir runoff. Taking the 20060826 flood as an example, the flood detention quantity of 19 small reservoirs is modeled. The results show that the absolute error of the total flood detention quantity is 0.2×10 4 m 3 , and the relative error is 0.12%. The flood detention quantity of small reservoirs in the entire basin is then modeled using this method, and the primary flood forecasting model is adjusted. After adjustment, the precision is significantly improved, with the relative error decreasing from 31.8% to 10.1%.