期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
长江武汉段4.5~2.5 ka沉积地层与古洪水标志识别 被引量:7
1
作者 张跞颖 李长安 +1 位作者 张玉芬 宋喆 《地质论评》 CAS CSCD 北大核心 2019年第4期973-982,共10页
长江中游近年洪灾频发,武汉江段更是其防洪重点,开展武汉地区的古洪水研究,从而延长古洪水记录,对洪水预测具有重要意义。本文选取武汉地区河谷沉溺湖区SK10钻孔沉积作为研究对象,运用AMS 14C测年技术厘定地层年代,通过粒度和地球化学... 长江中游近年洪灾频发,武汉江段更是其防洪重点,开展武汉地区的古洪水研究,从而延长古洪水记录,对洪水预测具有重要意义。本文选取武汉地区河谷沉溺湖区SK10钻孔沉积作为研究对象,运用AMS 14C测年技术厘定地层年代,通过粒度和地球化学元素的测定与分析,与文献中记录的古洪水频发期进行对比,建立一套适用于长江武汉段古洪水沉积的识别指标,并对长江武汉段距今4.5~2.5 ka的古洪水期进行研究。结果表明:①基于后湖与长江的分布关系,在钻孔沉积中选取粒度指标(P95、砂含量、平均粒径、黏土/粉砂、(粗粉砂+砂)/黏土)和地球化学指标(Na2O、Al2O3、Fe2O3、Rb/Sr、Zr/Rb)作为古洪水频发期识别标志,对武汉地区的洪水频发期沉积有较好的指示作用。②通过指标识别出的古洪水频发期为:2608±30 a BP、2814±35 a BP、3094±35 a BP、3577±35 a BP、3830±35 a BP、3939±35 a BP、4084±35 a BP、4193±35 a BP、4391±35 a BP左右,与文献记录中距今4.5~2.5 ka的几次洪水频发期基本一致。 展开更多
关键词 武汉地区 洪水频发 识别标志 粒度 地球化学
下载PDF
渭河2003年特大洪灾成因初探
2
作者 薛选世 武芸芸 《治黄科技信息》 2004年第2期4-8,共5页
8月27日以来,由于渭河流域出现大范围、长时间、高强度的持续降雨,使渭河相继发生了五次洪峰,流量之大,水位之高,持续时间之长,灾害损失之大,为历史所罕见。为了认真总结反思这次洪灾的经验教训,本文仅依据有关洪水等资料,初... 8月27日以来,由于渭河流域出现大范围、长时间、高强度的持续降雨,使渭河相继发生了五次洪峰,流量之大,水位之高,持续时间之长,灾害损失之大,为历史所罕见。为了认真总结反思这次洪灾的经验教训,本文仅依据有关洪水等资料,初步分析了洪灾的成因,并提出了相应的对策和措施,仅供参考。 展开更多
关键词 渭河流域 2003年 洪灾 洪峰流量 洪水频发
下载PDF
Influence of Flow Regime on the Vegetation Zonation along Mountain Streams in the Western Cape, South Africa 被引量:1
3
作者 Erwin Jacobus Joannes SIEBEN 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1484-1498,共15页
Zonation patterns of riparian vegetation have been sampled and described in mountain streams in two catchments in the Hottentots-Holland Mountains, Western Cape, South Africa. Six main vegetation types that differ in ... Zonation patterns of riparian vegetation have been sampled and described in mountain streams in two catchments in the Hottentots-Holland Mountains, Western Cape, South Africa. Six main vegetation types that differ in structure and species composition, are dominant along these river banks: Aquatic vegetation, Wetbanks, Palmiet, Scrub, Forest and Shrubland(Fynbos). The study aims to correlate the vegetation patterns to flooding patterns, in particular the inundation frequency and stream power. A problem arises: because these catchments are ungauged, like most mountain catchments, with the only weirs at the downstream end of the catchment. Discharge data at the weirs are extrapolated to the sites upstream by multiplication with a factor based on the size of the subcatchment that drains through a sample site. In this way, recurrence intervals for floods in mountain streams are derived. Discharges at sites are also calculated using bed roughness(Manning's n) and slope in straight sections with uniform flow conditions. Stream power is derived from the discharges calculated in this manner. The combination of stream power and recurrence intervals explains the occurrence of most vegetation types occurring on the banks, except for one type: Afromontane Forest. This type is probably more dependent on other factors, such as protection from fire and the depth of the groundwater table. 展开更多
关键词 Hydrology Hydraulics Riparian vegetation Mountain streams Floods Stream power Manning's n.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部