A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR rean...A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.展开更多
Wood debris is an important component of mountain streams. It causes serious damage and renders difficulty of water resource management in Taiwan. In this study, the quantity of wood debris and variation of migratory ...Wood debris is an important component of mountain streams. It causes serious damage and renders difficulty of water resource management in Taiwan. In this study, the quantity of wood debris and variation of migratory wood debris during flood events were examined. The downstream of Gaoshan Creek and Qijiawan Creek, located at Central Taiwan, was selected as the study area. The distribution and dynamic of wood debris in a high gradient headwater catchment were quantified using field surveys. A formula of critical depth for wood debris entrainment was used to evaluate the wood debris migration during three flooding events. In the study area, wood abundance and unit volume increased downstream, and wood density decreased downstream within a channel network. The channel morphology, riparian vegetation, and wood debris characteristics were found to influence the wood storage. As a result, the wood debris has an irregular accumulative distribution in the steep stream, and it migrates easily in the stream because of a high flow discharge. Strong relationships between the channel width and wood debris variables are discovered. Moreover, wood debris has a tendency to accumulate at sites with low stream power and wood debris dams, topographical notches, and unique geological structures. Our findings assist in the understanding of the effects of channel characteristics on distributions of wood debris in steep stream systems.展开更多
The actual situation of the Tisza Valley traditionally used for land farming is basically determined by the consequences of the river regulation of the nineteenth century which aimed at the extension of the intensive ...The actual situation of the Tisza Valley traditionally used for land farming is basically determined by the consequences of the river regulation of the nineteenth century which aimed at the extension of the intensive agriculture, by the extreme water regime of alternating periods of flood showing a deteriorating trend and drought related to the climatic change; and by several environmental problems induced mainly by the land use. The objective of the article is to prove the regional advantages of a proposed technical solution to mitigate the flood risk with a special regard to the land cover. Hydrodynamic modeling results prove that the best technical solution is given by a combination of different strategies containing the inundation of deep floodplains-areas regularly covered by water before the river regulation works and, globally, by an important mitigation of flood damages, the costs of solution would be surely covered in the longterm. By means of its natural-resembling operation, the regular water cover would allow a multiple use of water, contributing to the solution of the simultaneously existing aridity problem, and, the development of the floodplain landscape management would help improve the ecological and the economical upgrading of the region.展开更多
Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulti...Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073, 41471016, and U1133603)
文摘A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.
基金the Taiwan Science Council for financially supporting this research under Contract No.NSC96-2625-Z005-001-MY3
文摘Wood debris is an important component of mountain streams. It causes serious damage and renders difficulty of water resource management in Taiwan. In this study, the quantity of wood debris and variation of migratory wood debris during flood events were examined. The downstream of Gaoshan Creek and Qijiawan Creek, located at Central Taiwan, was selected as the study area. The distribution and dynamic of wood debris in a high gradient headwater catchment were quantified using field surveys. A formula of critical depth for wood debris entrainment was used to evaluate the wood debris migration during three flooding events. In the study area, wood abundance and unit volume increased downstream, and wood density decreased downstream within a channel network. The channel morphology, riparian vegetation, and wood debris characteristics were found to influence the wood storage. As a result, the wood debris has an irregular accumulative distribution in the steep stream, and it migrates easily in the stream because of a high flow discharge. Strong relationships between the channel width and wood debris variables are discovered. Moreover, wood debris has a tendency to accumulate at sites with low stream power and wood debris dams, topographical notches, and unique geological structures. Our findings assist in the understanding of the effects of channel characteristics on distributions of wood debris in steep stream systems.
文摘The actual situation of the Tisza Valley traditionally used for land farming is basically determined by the consequences of the river regulation of the nineteenth century which aimed at the extension of the intensive agriculture, by the extreme water regime of alternating periods of flood showing a deteriorating trend and drought related to the climatic change; and by several environmental problems induced mainly by the land use. The objective of the article is to prove the regional advantages of a proposed technical solution to mitigate the flood risk with a special regard to the land cover. Hydrodynamic modeling results prove that the best technical solution is given by a combination of different strategies containing the inundation of deep floodplains-areas regularly covered by water before the river regulation works and, globally, by an important mitigation of flood damages, the costs of solution would be surely covered in the longterm. By means of its natural-resembling operation, the regular water cover would allow a multiple use of water, contributing to the solution of the simultaneously existing aridity problem, and, the development of the floodplain landscape management would help improve the ecological and the economical upgrading of the region.
文摘Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.