The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in ...The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in planning post-disaster recovery and rebuilding. This paper presents recommendations for coping with large-scale geohazards and disasters. It is essential to establish a national emergency management system for huge scale catastrophe and earthquake precursor identification. Town construction must be kept away from active faults, especially to improve town safety in areas with high risk of seismic and geological hazards, and it is important to improve geohazard investigation and remediation for mountain areas that have become loosened by earthquake activity. Geological factors must be better understood to reduce direct and secondary risks and effects of earthquakes. Site selections for public relocation require clear and informed analysis of geological and social risk reduction, so that relocation, infrastructure reconstruction, and commemorative relic-sites can be protected.展开更多
Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow...Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.展开更多
In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI...In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2.展开更多
The high-resolution shallow seismic technique can be used for more accurately prospecting the position and property of faults and for the preliminary study of fault activity.The author obtains many high quality stack ...The high-resolution shallow seismic technique can be used for more accurately prospecting the position and property of faults and for the preliminary study of fault activity.The author obtains many high quality stack time sections through the prospecting methods of different seismic sources,different group intervals and different observation systems on the Xiadian fault.These sections clearly display the stratum structure and the structure characteristics from several meters to several hundred meters of the Xiadian fault.The resolutions of the different seismic sources,different group intervals and different observing systems are obtained.The prospecting methods and work parameters applicable for goal stratum of different depths and different accuracy requirements are proposed through the analysis of the stack time sections.This lays a good foundation for raising the prospecting resolution of the fault position and the latest active time of the fault.展开更多
基金supported by the National Basic Research Program of the Ministry of Science and Technology of the People’s Republic of China (973 Project, Grant No. 2008CB425801)
文摘The 2008 Wenchuan earthquake in Sichuan of China was the result of quake-triggering along an active several hundred-kilometer-long fault. The subsequent landslides and debris flow geohazards are dominating factors in planning post-disaster recovery and rebuilding. This paper presents recommendations for coping with large-scale geohazards and disasters. It is essential to establish a national emergency management system for huge scale catastrophe and earthquake precursor identification. Town construction must be kept away from active faults, especially to improve town safety in areas with high risk of seismic and geological hazards, and it is important to improve geohazard investigation and remediation for mountain areas that have become loosened by earthquake activity. Geological factors must be better understood to reduce direct and secondary risks and effects of earthquakes. Site selections for public relocation require clear and informed analysis of geological and social risk reduction, so that relocation, infrastructure reconstruction, and commemorative relic-sites can be protected.
文摘Abstract On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.
文摘In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2.
基金supported by the project of "Experimental Exploration of Urban Active Faults" of the National Development and Reform Commission of China (20041138)
文摘The high-resolution shallow seismic technique can be used for more accurately prospecting the position and property of faults and for the preliminary study of fault activity.The author obtains many high quality stack time sections through the prospecting methods of different seismic sources,different group intervals and different observation systems on the Xiadian fault.These sections clearly display the stratum structure and the structure characteristics from several meters to several hundred meters of the Xiadian fault.The resolutions of the different seismic sources,different group intervals and different observing systems are obtained.The prospecting methods and work parameters applicable for goal stratum of different depths and different accuracy requirements are proposed through the analysis of the stack time sections.This lays a good foundation for raising the prospecting resolution of the fault position and the latest active time of the fault.