Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac...Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass.展开更多
Long-line engineering sites usually have to pass through active tectonics, so the research of active tectonics is of great importance to seismic safety evaluation of this sort of site. In the paper, basing on the summ...Long-line engineering sites usually have to pass through active tectonics, so the research of active tectonics is of great importance to seismic safety evaluation of this sort of site. In the paper, basing on the summarization and analysis of the requirements for seismic safety evaluation of long-line engineering site and the status quo of active tectonics research, we propose the focal points of active tectonics research for seismic safety evaluation of long-line engineering sites, including the research contents, technical targets and routes, and the submission of the achievements, etc. Finally, we make a preliminary analysis and discussion about the problems existing in the present-day active tectonics research for seismic safety evaluation of long-line engineering sites.展开更多
基金financially supported by Projects of the National Key Technology R&D Program of China(Nos.2013BAB02B01 and2013BAB02B03)the National Natural Science Foundation of China(Nos.51274055 and 51204030)+1 种基金the Fundamental Research Funds for the Central University of China(Nos.N130401006,N120801002 and N120701001)the Key Science&Technology Special Project of Third Five-Year Plan of MCC(No.0012012009)
文摘Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass.
文摘Long-line engineering sites usually have to pass through active tectonics, so the research of active tectonics is of great importance to seismic safety evaluation of this sort of site. In the paper, basing on the summarization and analysis of the requirements for seismic safety evaluation of long-line engineering site and the status quo of active tectonics research, we propose the focal points of active tectonics research for seismic safety evaluation of long-line engineering sites, including the research contents, technical targets and routes, and the submission of the achievements, etc. Finally, we make a preliminary analysis and discussion about the problems existing in the present-day active tectonics research for seismic safety evaluation of long-line engineering sites.