Coal forming environments in the tectonically controlled intermontane Stephanian Cévennes coal basin (Massif central, France) show a complex interelationship between structural and sedimentological features. The ...Coal forming environments in the tectonically controlled intermontane Stephanian Cévennes coal basin (Massif central, France) show a complex interelationship between structural and sedimentological features. The study of the general structural features and the geometry of the coal beds developed during the different stages in the evolution of the basin, and the spatial relation of the lithofacial units to the early tectonic activities, lead the authors to suggest the following model. The synsedimentary faults that occurred as both intrabasinal and marginal faults controlled not only the spatial distribution, shape and thickness of the detrital rock units and coal seams, but also caused the inversion of the tectonic style. The marginal faults exercised important controls on the geometry of the basin and the distribution of lithofacial units. However due to the subsidence of the central part of the basin and the depocenter, and the to differences in the timing and intensity of the displacement the coal enrichment zones shifted both vertically and laterally. This eventually resulted in the inversion of the whole tectonic framework from semi graben through graben to a new semi graben. The style and rate of the tectonic movement and basin filling that occurred in the Stephanian Cévennes coal basin were in turn closely linked with the tectonic movement in the surrounding area. Therefore the authors propose that the environment and processes of coal formation in this basin are closely linked to its tectonic evolution.展开更多
On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic e...On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake.展开更多
This paper briefly introduces the current research progress in the field of foreshocks,both in China and abroad,and contrasts the common characteristics and the mechanisms of foreshocks of the sequence under the defin...This paper briefly introduces the current research progress in the field of foreshocks,both in China and abroad,and contrasts the common characteristics and the mechanisms of foreshocks of the sequence under the definition of different conditions of foreshocks. The main recognition methods of foreshocks are briefly reviewed,and their characteristics and existing problems are reviewed and discussed. Foreshocks are small earthquakes that occur before the mainshock and adjacent to the main source location. A foreshock sequence is constituted of a series of foreshock activities that occur before the mainshock. The proportion of earthquake cases includes direct foreshocks ranging from 10% - 40% at different defined conditions of foreshocks. Theoretically,cascade model or pre-slid model can explain foreshocks. Foreshocks are mainly concentrated in the range of 10km -75 km of the mainshock,but their time distribution form is very complicated,mostly prior to the mainshock from 1 or 2 days,the seismicity rate of part of foreshock sequences shows significant acceleration features,but many foreshock sequences often show the attenuation characteristics of mainshock-aftershock sequences. The most prominent feature of foreshocks is a focal consistent mechanism and low b-value of earthquakes of the earthquake sequence. Foreshocks seems to have a certain relationship with tectonic environment and the rupture form of the mainshock,in limited foreshocks earthquake cases,the dip-thrusting earthquakes seem to have relatively more foreshocks. The results of some of the earthquake cases show that the focal depth of foreshocks gradually moved downward with the mainshock approaching. So far,it is difficult to determine whether an earthquake or an earthquake sequence is a foreshock or foreshock sequence before the mainshock. The identification methods of foreshocks mainly include a statistical method of analogy,focal consistent mechanism and related derivative method,the fine detection of the earthquake nucleation process. From a few existing studies of earthquake cases,in spite of earthquake temporal clusters and focal consistent mechanism being the most significant features of foreshock sequence,there were not sufficient conditions for judging a foreshock sequence. Because the rupture rate of expansion and sliding displacement have a tendency to increase faster with time,the method of fine detection of the earthquake nucleation process is expected to play a more important role in the identification of foreshocks,but it needs more earthquake examples to be verified.展开更多
Here I collected natural gas samples from 41 industrial gas wells in the Tarim Basin,and studied the mercury distribution in the area.My data show that there is certain regularity in the distribution of mercury in the...Here I collected natural gas samples from 41 industrial gas wells in the Tarim Basin,and studied the mercury distribution in the area.My data show that there is certain regularity in the distribution of mercury in the Tarim Basin.Generally,the mercury concentration is high at the edge of the basin and low in the central basin.The highest mercury concentration occurs in the Southwest Depression,ranging from 15428.5 to 296763.0ng/m3 with an average of 156095.7ng/m3,followed by the Kuqa Depression ranging from 15.0 to 56964.3ng/m3 with an average of 11793.7ng/m3,and the Hade oil and gas field in the North Depression has the lowest mercury concentration ranging from 17.7 to 3339.5ng/m3 with an average of 1678.6ng/m3.The mercury concentrations in the natural gases of different structural units are various,with the highest mercury concentration in the zone of strong structural activity of Southwest Depression.It is profitable of Hg accumulation in the self sourced and self accumulated gas reservoirs or volcanic existence;in contrast,the low Hg concentration exists in the secondary gas reservoir.The mercury concentration in the natural gas generated under continental depositional environment is higher than that in marine gas.Therefore,the mercury concentration in the natural gases is constrained by gas genesis,depositional environment of source rocks,tectonic activity,and volcanic activity,and the tectonic activity is the main factor for the mercury concentration in the natural gas,followed by volcanic activity and depositional environments.展开更多
文摘Coal forming environments in the tectonically controlled intermontane Stephanian Cévennes coal basin (Massif central, France) show a complex interelationship between structural and sedimentological features. The study of the general structural features and the geometry of the coal beds developed during the different stages in the evolution of the basin, and the spatial relation of the lithofacial units to the early tectonic activities, lead the authors to suggest the following model. The synsedimentary faults that occurred as both intrabasinal and marginal faults controlled not only the spatial distribution, shape and thickness of the detrital rock units and coal seams, but also caused the inversion of the tectonic style. The marginal faults exercised important controls on the geometry of the basin and the distribution of lithofacial units. However due to the subsidence of the central part of the basin and the depocenter, and the to differences in the timing and intensity of the displacement the coal enrichment zones shifted both vertically and laterally. This eventually resulted in the inversion of the whole tectonic framework from semi graben through graben to a new semi graben. The style and rate of the tectonic movement and basin filling that occurred in the Stephanian Cévennes coal basin were in turn closely linked with the tectonic movement in the surrounding area. Therefore the authors propose that the environment and processes of coal formation in this basin are closely linked to its tectonic evolution.
基金the National Natural Science Foundation of China (Grant No. 40841010,40972083,41172162)the National Science and Technology Support Program (Grant nNo. 2006BAC13B02-107,2006BAC13B01-604) for the funding
文摘On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake.
基金supported by the Special Task for Science and Technology Project of the Department of Earthquake Monitoring and Prediction,CEA in 2016(1640501320212)
文摘This paper briefly introduces the current research progress in the field of foreshocks,both in China and abroad,and contrasts the common characteristics and the mechanisms of foreshocks of the sequence under the definition of different conditions of foreshocks. The main recognition methods of foreshocks are briefly reviewed,and their characteristics and existing problems are reviewed and discussed. Foreshocks are small earthquakes that occur before the mainshock and adjacent to the main source location. A foreshock sequence is constituted of a series of foreshock activities that occur before the mainshock. The proportion of earthquake cases includes direct foreshocks ranging from 10% - 40% at different defined conditions of foreshocks. Theoretically,cascade model or pre-slid model can explain foreshocks. Foreshocks are mainly concentrated in the range of 10km -75 km of the mainshock,but their time distribution form is very complicated,mostly prior to the mainshock from 1 or 2 days,the seismicity rate of part of foreshock sequences shows significant acceleration features,but many foreshock sequences often show the attenuation characteristics of mainshock-aftershock sequences. The most prominent feature of foreshocks is a focal consistent mechanism and low b-value of earthquakes of the earthquake sequence. Foreshocks seems to have a certain relationship with tectonic environment and the rupture form of the mainshock,in limited foreshocks earthquake cases,the dip-thrusting earthquakes seem to have relatively more foreshocks. The results of some of the earthquake cases show that the focal depth of foreshocks gradually moved downward with the mainshock approaching. So far,it is difficult to determine whether an earthquake or an earthquake sequence is a foreshock or foreshock sequence before the mainshock. The identification methods of foreshocks mainly include a statistical method of analogy,focal consistent mechanism and related derivative method,the fine detection of the earthquake nucleation process. From a few existing studies of earthquake cases,in spite of earthquake temporal clusters and focal consistent mechanism being the most significant features of foreshock sequence,there were not sufficient conditions for judging a foreshock sequence. Because the rupture rate of expansion and sliding displacement have a tendency to increase faster with time,the method of fine detection of the earthquake nucleation process is expected to play a more important role in the identification of foreshocks,but it needs more earthquake examples to be verified.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40802028 & 41173035)the China National Key Fundamental Research and Development Project (Grant Nos. 2012CB214800 & 2005CB422108)the National Science & Technology Special Project (Grant No. 2011ZX05005)
文摘Here I collected natural gas samples from 41 industrial gas wells in the Tarim Basin,and studied the mercury distribution in the area.My data show that there is certain regularity in the distribution of mercury in the Tarim Basin.Generally,the mercury concentration is high at the edge of the basin and low in the central basin.The highest mercury concentration occurs in the Southwest Depression,ranging from 15428.5 to 296763.0ng/m3 with an average of 156095.7ng/m3,followed by the Kuqa Depression ranging from 15.0 to 56964.3ng/m3 with an average of 11793.7ng/m3,and the Hade oil and gas field in the North Depression has the lowest mercury concentration ranging from 17.7 to 3339.5ng/m3 with an average of 1678.6ng/m3.The mercury concentrations in the natural gases of different structural units are various,with the highest mercury concentration in the zone of strong structural activity of Southwest Depression.It is profitable of Hg accumulation in the self sourced and self accumulated gas reservoirs or volcanic existence;in contrast,the low Hg concentration exists in the secondary gas reservoir.The mercury concentration in the natural gas generated under continental depositional environment is higher than that in marine gas.Therefore,the mercury concentration in the natural gases is constrained by gas genesis,depositional environment of source rocks,tectonic activity,and volcanic activity,and the tectonic activity is the main factor for the mercury concentration in the natural gas,followed by volcanic activity and depositional environments.