This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy...This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.展开更多
In vertebrates, the patterning of anterior-posterior (AP) axis is a fundamental process during embryogenesis. Wnt and FGF signalling pathways play important roles in regulating the patterning of embryo AP axis. Mous...In vertebrates, the patterning of anterior-posterior (AP) axis is a fundamental process during embryogenesis. Wnt and FGF signalling pathways play important roles in regulating the patterning of embryo AP axis. Mouse Tbx6 encodes a transcription factor that has been demonstrated to be involved in the specification of the posterior tissue in mouse embryonic body. Here, we prove that morpholino-induced knockdown of XTbx6 impairs posterior development, indicating the requirement of XTbx6 in this process. Meanwhile, gain of XTbx6 function is sufficient to induce ectopic posterior structures in Xenopus embryos. Furthermore, XTbx6 activates the expression of Xwnt8 and FGF8, which are two mediators of posterior development, suggesting a mechanism by which XTbx6 modulates posterior patterning via Wnt and FGF signalling pathway activation.展开更多
基金supported by the National Natural Science Foundation of China (51374004,51204083)the Candidate Talents Training Fund of Yun-nan Province (2012HB009,2014HB006)+2 种基金the Applied Basic Research Program of Yunnan Province (2014FB123)a School-Enterprise Cooperation Project from Jinchuan Corporation (Jinchuan 201115)the Talents Training Program of Kunming University of Science and Technology (KKZ3201352038)~~
文摘This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.
基金the National Natural Science Foundation of China (90408005, 30270650) the National Key Project for Basic Science Research of China (2001CB509901).
文摘In vertebrates, the patterning of anterior-posterior (AP) axis is a fundamental process during embryogenesis. Wnt and FGF signalling pathways play important roles in regulating the patterning of embryo AP axis. Mouse Tbx6 encodes a transcription factor that has been demonstrated to be involved in the specification of the posterior tissue in mouse embryonic body. Here, we prove that morpholino-induced knockdown of XTbx6 impairs posterior development, indicating the requirement of XTbx6 in this process. Meanwhile, gain of XTbx6 function is sufficient to induce ectopic posterior structures in Xenopus embryos. Furthermore, XTbx6 activates the expression of Xwnt8 and FGF8, which are two mediators of posterior development, suggesting a mechanism by which XTbx6 modulates posterior patterning via Wnt and FGF signalling pathway activation.