期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
乙烷氧化脱氢制乙烯纳米Sm_2O_3催化剂的研究 被引量:7
1
作者 袁艳萍 翁维正 +3 位作者 李建梅 陈铜 廖远琰 万惠霖 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第2期208-212,共5页
采用XRD,TEM,BET,CO2 TPD,O2 TPD和催化剂性能评价等方法对溶胶 凝胶法制备的纳米Sm2O3的物相、颗粒度、比表面、碱性、吸附活化氧物种的能力和催化剂的ODE性能进行了表征和评价,并与常规Sm2O3进行了比较.实验结果表明,纳米Sm2O3催化剂... 采用XRD,TEM,BET,CO2 TPD,O2 TPD和催化剂性能评价等方法对溶胶 凝胶法制备的纳米Sm2O3的物相、颗粒度、比表面、碱性、吸附活化氧物种的能力和催化剂的ODE性能进行了表征和评价,并与常规Sm2O3进行了比较.实验结果表明,纳米Sm2O3催化剂具有较佳的低温ODE反应性能,在500~600℃的温度范围内,纳米Sm2O3的乙烷转化率和乙烯选择性均优于常规Sm2O3,其原因主要与纳米催化剂体系具有较大比表面,较多的表面缺陷位,较弱的碱性和不同于常规催化剂体系的物相结构并因此更有利于吸附和活化氧物种等因素有关.采用高温原位显微Raman光谱对纳米Sm2O3上ODE反应活性氧物种的表征结果表明,O22-是Sm2O3催化剂上ODE反应的活性氧物种. 展开更多
关键词 乙烷 乙烯 制备 氢化脱氢 纳米Sm2O3催化剂 活化氧物种 溶胶—凝胶法
下载PDF
Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation 被引量:8
2
作者 Rao Lu Lei He +2 位作者 Yang Wang Xin-Qian Gao Wen-Cui Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期350-356,共7页
Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via ... Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species. 展开更多
关键词 ALUMINA Gold catalyst Nickel doping CO oxidation Oxygen activation
下载PDF
Generation and transformation of ROS on g-C_3N_4 for efficient photocatalytic NO removal:A combined in situ DRIFTS and DFT investigation 被引量:4
3
作者 Jieyuan Li Ping Yan +5 位作者 Kanglu Li Wanglai Cen Xiaowei Yu Shandong Yuan Yinghao Chu Zhengming Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1695-1703,共9页
Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transforma... Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation. 展开更多
关键词 PHOTOCATALYSIS Reactive oxygen species g‐C3N4 NO removal Reaction mechanism
下载PDF
Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals 被引量:5
4
作者 刘建国 张晓丽 +1 位作者 孙延红 林伟 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第1期1-9,共9页
The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in th... The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacted with ROS much faster than did the protective enzymes,and had the strongest antioxidative capacity to protect against lipid peroxidation.The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells.Astaxanthin-enriched red cells had the strongest antioxidative capacity,followed by brown cells,and astaxanthin-deficient green cells.Although there was no significant increase in expression of protective enzymes,the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin,which quenched Oˉ2 before the protective enzymes could act.In green cells,astaxanthin is very low or absent;therefore,scavenging of ROS is inevitably reliant on antioxidative enzymes.Accordingly,in green cells,these enzymes play the leading role in scavenging ROS,and the expression of these enzymes is rapidly increased to reduce excessive ROS.However,because ROS were constantly increased in this study,the enhance enzyme activity in the green cells was not able to repair the ROS damage,leading to elevated MDA content.Of the four defensive enzymes measured in astaxanthin-deficient green cells,SOD eliminates Oˉ2,POD eliminates H2O2,which is a by-product of SOD activity,and APX and CAT are then initiated to scavenge excessive ROS. 展开更多
关键词 ASTAXANTHIN Haematococcus pluvialis lipid peroxidation reactive oxygen species (ROS)
下载PDF
Enhanced photocatalytic performance of MoS_2 modified by AgVO_3 from improved generation of reactive oxygen species 被引量:1
5
作者 YingyingQina HongLia +3 位作者 JianLuc YongshengYanc ZiyangLud XinlinLiub 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第9期1470-1483,共14页
In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessi... In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessing the degradation of different organic pollutants under visible-light irradiation. The composite 3%-AgVO3/MoS 2 catalyst demonstrated a significantly enhanced photocatalytic activity compared to the pure compounds(AgVO3 and MoS2). The reason behind the excellent photocatalytic performance was the modification of MoS 2 by AgVO3 to facilitate O2 adsorption/activation. In addition, the composite catalyst facilitates the two-electron oxygen reduction reaction whereby H2O2 is generated on the surface of MoS 2 to produce additional reactive oxygen species(ROSs). ESR coupled with the POPHA fluorescence detection method and a free radical capture experiment were used to elucidate the mechanism of formation of the ROSs, including ·OH, ·O2- and H2O2. Furthermore, the generation of additional ROSs could accelerate electron consumption, leaving behind more holes for the oxidation of organic pollutants. A possible photocatalytic mechanism of the composite is also discussed. 展开更多
关键词 Reactive oxygenspecie AgVO3/MoS2 Photocataly stVisiblelight Organic pollutant
下载PDF
Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis
6
作者 王辉 杨洪帅 +2 位作者 刘加慧 李艳红 刘志刚 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第4期905-912,共8页
A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activit... A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution. 展开更多
关键词 Crassostrea ariakensis CATALASE TEMPERATURE copper ion concentration combined effects
下载PDF
Realgar induces differentiation through ROS-dependent mitochondrial pathway in HL-60 cells 被引量:2
7
作者 袁丽佳 王聪 +3 位作者 刘伟 刘文龙 苟宝迪 张天蓝 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2013年第2期184-189,共6页
Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the ... Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the arsenolite (As 2 O 3 )-based drugs. We have previously demonstrated that realgar induces differentiation in HL-60 cells, and the differentiation is associated with serine/threonine protein phosphatases, MAPK signaling pathways, and mitochondrial transmembrane potential decrease. In this study, we further explore the roles of mitochondrial permeability transition pore and reactive oxygen species (ROS) in realgar-induced differentiation in HL-60 cells. The differentiation was preceded by marked changes in the cellular level of ROS, and could be enhanced by SB202190, a p38 MAPK inhibitor. In addition, the efficacy of realgar was suppressed by closing the MPTP with an inhibitor. Taken together, these findings indicate that the opening of MPTP and the alteration of ROS generation were involved in realgar-induced differentiation. 展开更多
关键词 Realgar Cell differentiation Reactive oxygen species Mitochondrial permeability transition pore HL-60 cells
原文传递
Vanadium compounds induce stronger growth suppression in PTEN-deficient prostate cancer cells by ROS-mediated mechanism 被引量:2
8
作者 洪艺华 刘曈彤 +2 位作者 刘彦君 吴竞轩 杨晓改 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2017年第6期432-439,共8页
In the present study, we investigated the antiproliferative effect and the underlying mechanism of three antidiabetic vanadium compounds, metavanadate, VO(acac)2 and VO(ma)2, in human prostate cancer cells (PC-3 ... In the present study, we investigated the antiproliferative effect and the underlying mechanism of three antidiabetic vanadium compounds, metavanadate, VO(acac)2 and VO(ma)2, in human prostate cancer cells (PC-3 and DU-145). The results showed that vanadium compounds caused cell cycle arrest at G2/M phase evidenced by the elevation ofphosphorylated Cdc2 at tyr-15. Moreover, the results revealed that vanadium compounds induced reactive oxygen species (ROS) elevation in the two cell lines. The decreased level of Cdc25C could be rescued by the antioxidant, N-acetylcysteine, indicating that vanadium compounds-induced G2/M arrest was mediated by ROS. Additionally, the three vanadium compounds exerted more potent growth inhibitory effect on PC-3 cells which are PTEN-deficient and with higher level of basal ROS. It suggested that PTEN protein might serve as a biomarker for the selectivity of antitumor therapy using ROS-generating agents. Since the studied vanadium compounds have been shown the antidiabetic activities in the previous studies, there may be additional benefits in the potential application of vanadium compounds to suppress the growth of prostate cancer cells. 展开更多
关键词 Vanadium compounds Reactive oxygen species PTEN Prostate cancer DIABETES
原文传递
Gadolinium-promoted angiogenesis involves the activation of PKCα/β_2 and MAPKs in human umbilical vein endothelial cells 被引量:1
9
作者 万箫 苟宝迪 王夔 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2013年第1期71-76,共6页
Gadolinium has been widely used as a contrast agent for magnetic resonance imaging in clinical practice. Recently, it was reported that gadolinium is involved in nephrogenic systemic fibrosis, although the exact mecha... Gadolinium has been widely used as a contrast agent for magnetic resonance imaging in clinical practice. Recently, it was reported that gadolinium is involved in nephrogenic systemic fibrosis, although the exact mechanism by which gadolinium triggers nephrogenic systemic fibrosis remains unclear. In this study, we show that gadolinium chloride (GdC13) induced human umbilical vein endothelial cells (HUVECs) to migrate in Matrigel and tubulogenesis during wound healing. Chick chorioallantoic membrane assay confirmed that GdC13 stimulates angiogenesis. Under the optimal angiogenic concentration of GdC13 (1 0 ~tM), intracellular calcium concentration and reactive oxygen species generation were elevated. Moreover, western blotting results indicate that in cells treated with GdC13, Ca2+-dependent PKCa/132 was phosphorylated, and MAPKs pathways were also activated. Taken together, GdC13 has a potential effect on angiogenesis in HUVECs, and the possible mechanisms may involve oxidative stress and calcium-related signalin~ pathways. 展开更多
关键词 Gadolinium chloride ANGIOGENESIS Reactive oxygen species Signaling pathways Human umbilical vein endothelial cells
原文传递
Role of vanadyl acetylacetonate-induced elevation of reactive oxygen species in the regulation of lipolysis and glucose metabolism in 3T3L1 adipocytes
10
作者 李逸 刘竟成 +3 位作者 于游 卞卫霞 胡霞 杨晓改 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2015年第11期726-733,共8页
In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and gluc... In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and glucose metabolism using differentiated 3T3L1 adipocytes as a model system. By confocal laser scanning microscopy, we found that VO(acac)2 induced ROS generation under high glucose stimulation, and the pretreatment of NADPH oxidase inhibitors could significantly reduce the elevated ROS level. Meanwhile, the decreased phosphorylated levels of AKT and the two key modulators of lipolysis(HSL and perilipin) were observed by western blot analysis. We also found that the contents of glycerol release were further reduced as well. In addition, the levels of key regulatory proteins, AS160 and GSK3β, in glucose metabolism pathway were correspondingly reduced. These findings demonstrated that ROS induced by vanadium compounds could act as a metabolic signal to activate AKT pathway to inhibit lipolysis and promote glucose transport and glycogen synthesis rather than by direct action by themselves. Our study contributed to elucidate the anti-diabetic effects of vanadium compounds and provided a theoretical basis for the further development of new vanadium complexes in the prevention and therapeutics of diabetes. 展开更多
关键词 Vanadyl acetylacetonate LIPOLYSIS Reactive oxygen species Glucose metabolism 3T3L1 adipocytes
原文传递
Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process 被引量:3
11
作者 Zhiruo Zhou Zhurui Shen +5 位作者 Zhihui Cheng Guan Zhang Mingmei Li Yi Li Sihui Zhan John C.Crittenden 《Science Bulletin》 SCIE EI CSCD 2020年第24期2107-2119,M0006,共14页
Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either har... Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either harbored by antibiotic-resistant bacteria(ARB) or free in the environment.However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO_(2)/graphene oxide(GO),combined with a polyvinylidene fluoride(PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low.Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp^(2) backbones and functional oxygen groups,which efficiently captured and enriched the ARGs via p-p interactions and hydrogen bonds. Therefore,the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/Ti O2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecularlevel understanding of ARG behaviors on a solid–liquid interface will inspire further control strategies of ARGs in the future. 展开更多
关键词 Trace contaminants Antibiotic resistance genes(ARGs) Synergistic adsorption and photocatalytic oxidation Interfacial behaviors
原文传递
Designed polymeric conjugation motivates tunable activation of molecular oxygen in heterogeneous organic photosynthesis 被引量:2
12
作者 Wenhao Sun Yonggang Xiang +6 位作者 Zhihui Jiang Shengyao Wang Nan Yang Shangbin Jin Linhao Sun Huailong Teng Hao Chen 《Science Bulletin》 SCIE EI CSCD 2022年第1期61-70,M0004,共11页
Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on ... Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis. 展开更多
关键词 PHOTOCATALYSIS Conjugated polymers Molecular oxygen activation Aerobic oxidation Polymeric conjugation
原文传递
Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature 被引量:5
13
作者 Huawen Hu John H. Xin Hong Hu Xiaowen Wang 《Nano Research》 SCIE EI CAS CSCD 2015年第12期3992-4006,共15页
The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid proble... The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal- containing catalysts, for example, environmental pollution by heavy metals and depletion of rare metal resources. Herein, an active and durable graphene carbocatalyst is presented for the carbocatalytic conversion of 4-nitrophenol to 4-aminophenol at ambient temperature. The carbocatalyst was prepared via a mild, water-based reaction between L-ascorbic acid (AA) and graphene oxide (GO) and did not involve any other reactants. During the structure and catalytic property optimization, a series of carbocatalysts were fabricated at various reaction temperatures and AA/GO ratios. Using several characterization techniques, detailed structural features of these carbocatalysts were identified. Possible active species and sites on the carbocatalysts were also identified such as certain oxygen-containing groups, the ~x-conjugated system, and graphene sheet edges. In addition, the synergistic effect between these active species and sites on the resulting catalytic activity is highlighted. Furthermore, we clarified the origin of the high stability and durability of the optimized carbocatalyst. The work presented here aids the design of high-performance carbocatalysts for hydrogenation reactions, and increases understanding of the structural and mechanistic aspects at the molecular level that lead to high catalyst activity and durability. 展开更多
关键词 metal-free graphene carbocatalyst activity and durability L-ascorbic acid active sites and domains synergistic effect carbocatalytic conversion of 4-nitrophenol (4NP) to 4-aminophenol (4AP)
原文传递
Amavadin induced PTP opening not through the promotion of ROS generation in rat kidney mitochondria
14
作者 霍辰伊 刘会雪 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2014年第12期830-836,共7页
Amavadin is a natural vanadium compound that accumulates to high level in poisonous Amanita mushrooms. Recently, amavadin was found to have potential therapeutic effect in cancer treatment. However, its toxicity and t... Amavadin is a natural vanadium compound that accumulates to high level in poisonous Amanita mushrooms. Recently, amavadin was found to have potential therapeutic effect in cancer treatment. However, its toxicity and the possible mechanism of actions are still not clear. In this study, we investigated the toxic effects of amavadin on rat kidney mitochondria and the possible mechanism. We found that amavadin induced significantly permeability transition pore (PTP) opening in the mitochondria. Amavadin y inhibited the generation of reactive oxygen species (ROS) in succinate buffer, and at high concentration of 200 gM it increased the ROS generation in malate buffer. With the addition of rotenone, the ROS generation in malate buffer was strongly enhanced than that induced by amavadin alone, but remained unchanged in succinate buffer. Results from the present study suggest that amavadin act upon electron transport chain downstream of rotenone, and the ubiquinone binding site in complex I is the most possible binding site. 展开更多
关键词 Amavadin Vanadium compound MITOCHONDRIA Reactive oxygen species Permeability transition pore
原文传递
Carbon-CeO interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions 被引量:2
15
作者 Changjin Xu Yue Zhang +3 位作者 Jing Chen Song Li Ya-Wen Zhang Gaowu Qin 《Science China Materials》 SCIE EI CSCD 2021年第1期128-136,共9页
Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during hars... Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts. 展开更多
关键词 catalyst stability Pt nanocatalyst interface confinement
原文传递
Inactivating SARS-CoV-2 by electrochemical oxidation
16
作者 Yunchuan Tu Wei Tang +11 位作者 Liang Yu Zheyi Liu Yanting Liu Huicong Xia Haiwei Zhang Shiyun Chen Jia Wu Xiaoju Cui Jianan Zhang Fangjun Wang Yangbo Hu Dehui Deng 《Science Bulletin》 SCIE EI CSCD 2021年第7期720-726,M0004,共8页
Fully inactivating SARS-Co V-2, the virus causing coronavirus disease 2019, is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinf... Fully inactivating SARS-Co V-2, the virus causing coronavirus disease 2019, is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinfectants. Herein, we report an eco-friendly and efficient electrochemical strategy for inactivating the SARS-Co V-2 using in-situ formed nickel oxide hydroxide as anode catalyst and sodium carbonate as electrolyte. At a voltage of 5 V, the SARS-Co V-2 viruses can be rapidly inactivated with disinfection efficiency reaching 95% in only 30 s and 99.99% in 5 min. Mass spectrometry analysis and theoretical calculations indicate that the reactive oxygen species generated on the anode can oxidize the peptide chains and induce cleavage of the peptide backbone of the receptor binding domain of the SARS-Co V-2 spike glycoprotein, and thereby disables the virus. This strategy provides a sustainable and highly efficient approach for the disinfection of the SARS-CoV-2 viruliferous aerosols and wastewater. 展开更多
关键词 Electrochemical oxidation Reactive oxygen specie Receptor binding domain SARS-Co V-2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部