Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via ...Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.展开更多
Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transforma...Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.展开更多
The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in th...The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacted with ROS much faster than did the protective enzymes,and had the strongest antioxidative capacity to protect against lipid peroxidation.The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells.Astaxanthin-enriched red cells had the strongest antioxidative capacity,followed by brown cells,and astaxanthin-deficient green cells.Although there was no significant increase in expression of protective enzymes,the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin,which quenched Oˉ2 before the protective enzymes could act.In green cells,astaxanthin is very low or absent;therefore,scavenging of ROS is inevitably reliant on antioxidative enzymes.Accordingly,in green cells,these enzymes play the leading role in scavenging ROS,and the expression of these enzymes is rapidly increased to reduce excessive ROS.However,because ROS were constantly increased in this study,the enhance enzyme activity in the green cells was not able to repair the ROS damage,leading to elevated MDA content.Of the four defensive enzymes measured in astaxanthin-deficient green cells,SOD eliminates Oˉ2,POD eliminates H2O2,which is a by-product of SOD activity,and APX and CAT are then initiated to scavenge excessive ROS.展开更多
In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessi...In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessing the degradation of different organic pollutants under visible-light irradiation. The composite 3%-AgVO3/MoS 2 catalyst demonstrated a significantly enhanced photocatalytic activity compared to the pure compounds(AgVO3 and MoS2). The reason behind the excellent photocatalytic performance was the modification of MoS 2 by AgVO3 to facilitate O2 adsorption/activation. In addition, the composite catalyst facilitates the two-electron oxygen reduction reaction whereby H2O2 is generated on the surface of MoS 2 to produce additional reactive oxygen species(ROSs). ESR coupled with the POPHA fluorescence detection method and a free radical capture experiment were used to elucidate the mechanism of formation of the ROSs, including ·OH, ·O2- and H2O2. Furthermore, the generation of additional ROSs could accelerate electron consumption, leaving behind more holes for the oxidation of organic pollutants. A possible photocatalytic mechanism of the composite is also discussed.展开更多
A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activit...A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.展开更多
Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the ...Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the arsenolite (As 2 O 3 )-based drugs. We have previously demonstrated that realgar induces differentiation in HL-60 cells, and the differentiation is associated with serine/threonine protein phosphatases, MAPK signaling pathways, and mitochondrial transmembrane potential decrease. In this study, we further explore the roles of mitochondrial permeability transition pore and reactive oxygen species (ROS) in realgar-induced differentiation in HL-60 cells. The differentiation was preceded by marked changes in the cellular level of ROS, and could be enhanced by SB202190, a p38 MAPK inhibitor. In addition, the efficacy of realgar was suppressed by closing the MPTP with an inhibitor. Taken together, these findings indicate that the opening of MPTP and the alteration of ROS generation were involved in realgar-induced differentiation.展开更多
In the present study, we investigated the antiproliferative effect and the underlying mechanism of three antidiabetic vanadium compounds, metavanadate, VO(acac)2 and VO(ma)2, in human prostate cancer cells (PC-3 ...In the present study, we investigated the antiproliferative effect and the underlying mechanism of three antidiabetic vanadium compounds, metavanadate, VO(acac)2 and VO(ma)2, in human prostate cancer cells (PC-3 and DU-145). The results showed that vanadium compounds caused cell cycle arrest at G2/M phase evidenced by the elevation ofphosphorylated Cdc2 at tyr-15. Moreover, the results revealed that vanadium compounds induced reactive oxygen species (ROS) elevation in the two cell lines. The decreased level of Cdc25C could be rescued by the antioxidant, N-acetylcysteine, indicating that vanadium compounds-induced G2/M arrest was mediated by ROS. Additionally, the three vanadium compounds exerted more potent growth inhibitory effect on PC-3 cells which are PTEN-deficient and with higher level of basal ROS. It suggested that PTEN protein might serve as a biomarker for the selectivity of antitumor therapy using ROS-generating agents. Since the studied vanadium compounds have been shown the antidiabetic activities in the previous studies, there may be additional benefits in the potential application of vanadium compounds to suppress the growth of prostate cancer cells.展开更多
Gadolinium has been widely used as a contrast agent for magnetic resonance imaging in clinical practice. Recently, it was reported that gadolinium is involved in nephrogenic systemic fibrosis, although the exact mecha...Gadolinium has been widely used as a contrast agent for magnetic resonance imaging in clinical practice. Recently, it was reported that gadolinium is involved in nephrogenic systemic fibrosis, although the exact mechanism by which gadolinium triggers nephrogenic systemic fibrosis remains unclear. In this study, we show that gadolinium chloride (GdC13) induced human umbilical vein endothelial cells (HUVECs) to migrate in Matrigel and tubulogenesis during wound healing. Chick chorioallantoic membrane assay confirmed that GdC13 stimulates angiogenesis. Under the optimal angiogenic concentration of GdC13 (1 0 ~tM), intracellular calcium concentration and reactive oxygen species generation were elevated. Moreover, western blotting results indicate that in cells treated with GdC13, Ca2+-dependent PKCa/132 was phosphorylated, and MAPKs pathways were also activated. Taken together, GdC13 has a potential effect on angiogenesis in HUVECs, and the possible mechanisms may involve oxidative stress and calcium-related signalin~ pathways.展开更多
In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and gluc...In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and glucose metabolism using differentiated 3T3L1 adipocytes as a model system. By confocal laser scanning microscopy, we found that VO(acac)2 induced ROS generation under high glucose stimulation, and the pretreatment of NADPH oxidase inhibitors could significantly reduce the elevated ROS level. Meanwhile, the decreased phosphorylated levels of AKT and the two key modulators of lipolysis(HSL and perilipin) were observed by western blot analysis. We also found that the contents of glycerol release were further reduced as well. In addition, the levels of key regulatory proteins, AS160 and GSK3β, in glucose metabolism pathway were correspondingly reduced. These findings demonstrated that ROS induced by vanadium compounds could act as a metabolic signal to activate AKT pathway to inhibit lipolysis and promote glucose transport and glycogen synthesis rather than by direct action by themselves. Our study contributed to elucidate the anti-diabetic effects of vanadium compounds and provided a theoretical basis for the further development of new vanadium complexes in the prevention and therapeutics of diabetes.展开更多
Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either har...Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either harbored by antibiotic-resistant bacteria(ARB) or free in the environment.However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO_(2)/graphene oxide(GO),combined with a polyvinylidene fluoride(PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low.Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp^(2) backbones and functional oxygen groups,which efficiently captured and enriched the ARGs via p-p interactions and hydrogen bonds. Therefore,the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/Ti O2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecularlevel understanding of ARG behaviors on a solid–liquid interface will inspire further control strategies of ARGs in the future.展开更多
Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on ...Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis.展开更多
The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid proble...The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal- containing catalysts, for example, environmental pollution by heavy metals and depletion of rare metal resources. Herein, an active and durable graphene carbocatalyst is presented for the carbocatalytic conversion of 4-nitrophenol to 4-aminophenol at ambient temperature. The carbocatalyst was prepared via a mild, water-based reaction between L-ascorbic acid (AA) and graphene oxide (GO) and did not involve any other reactants. During the structure and catalytic property optimization, a series of carbocatalysts were fabricated at various reaction temperatures and AA/GO ratios. Using several characterization techniques, detailed structural features of these carbocatalysts were identified. Possible active species and sites on the carbocatalysts were also identified such as certain oxygen-containing groups, the ~x-conjugated system, and graphene sheet edges. In addition, the synergistic effect between these active species and sites on the resulting catalytic activity is highlighted. Furthermore, we clarified the origin of the high stability and durability of the optimized carbocatalyst. The work presented here aids the design of high-performance carbocatalysts for hydrogenation reactions, and increases understanding of the structural and mechanistic aspects at the molecular level that lead to high catalyst activity and durability.展开更多
Amavadin is a natural vanadium compound that accumulates to high level in poisonous Amanita mushrooms. Recently, amavadin was found to have potential therapeutic effect in cancer treatment. However, its toxicity and t...Amavadin is a natural vanadium compound that accumulates to high level in poisonous Amanita mushrooms. Recently, amavadin was found to have potential therapeutic effect in cancer treatment. However, its toxicity and the possible mechanism of actions are still not clear. In this study, we investigated the toxic effects of amavadin on rat kidney mitochondria and the possible mechanism. We found that amavadin induced significantly permeability transition pore (PTP) opening in the mitochondria. Amavadin y inhibited the generation of reactive oxygen species (ROS) in succinate buffer, and at high concentration of 200 gM it increased the ROS generation in malate buffer. With the addition of rotenone, the ROS generation in malate buffer was strongly enhanced than that induced by amavadin alone, but remained unchanged in succinate buffer. Results from the present study suggest that amavadin act upon electron transport chain downstream of rotenone, and the ubiquinone binding site in complex I is the most possible binding site.展开更多
Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during hars...Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts.展开更多
Fully inactivating SARS-Co V-2, the virus causing coronavirus disease 2019, is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinf...Fully inactivating SARS-Co V-2, the virus causing coronavirus disease 2019, is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinfectants. Herein, we report an eco-friendly and efficient electrochemical strategy for inactivating the SARS-Co V-2 using in-situ formed nickel oxide hydroxide as anode catalyst and sodium carbonate as electrolyte. At a voltage of 5 V, the SARS-Co V-2 viruses can be rapidly inactivated with disinfection efficiency reaching 95% in only 30 s and 99.99% in 5 min. Mass spectrometry analysis and theoretical calculations indicate that the reactive oxygen species generated on the anode can oxidize the peptide chains and induce cleavage of the peptide backbone of the receptor binding domain of the SARS-Co V-2 spike glycoprotein, and thereby disables the virus. This strategy provides a sustainable and highly efficient approach for the disinfection of the SARS-CoV-2 viruliferous aerosols and wastewater.展开更多
文摘Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.
基金the National Natural Science Foundation of China(51508356)Science and Technology Support Program of Sichuan Province(2014GZ0213,2016GZ0045)Youth Project in Science and Technology Innovation Program of Sichuan Province(17-YCG053)~~
文摘Understanding the performance of reactive oxygen species(ROS)in photocatalysis is pivotal for advancing their application in environmental remediation.However,techniques for investigating the generation and transformation mechanism of ROS have been largely overlooked.In this study,considering g‐C3N4 to be a model photocatalyst,we have focused on the ROS generation and transformation for efficient photocatalytic NO removal.It was found that the key to improving the photocatalysis performance was to enhance the ROS transformation from·O2^-to·OH,elevating the production of·OH.The ROS directly participate in the photocatalytic NO removal and tailor the rate‐determining step,which is required to overcome the high activation energy of the intermediate conversion.Using a closely combined experimental and theoretical method,this work provides a new protocol to investigate the ROS behavior on g‐C3N4 for effective NO removal and clarifies the reaction mechanism at the atomic level,which enriches the understanding of ROS in photocatalytic environmental remediation.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09Z403)the Special Project for Marine Public Welfare Industry (No.200705010)the National Natural Science Foundation of China (No. 30771638)
文摘The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacted with ROS much faster than did the protective enzymes,and had the strongest antioxidative capacity to protect against lipid peroxidation.The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells.Astaxanthin-enriched red cells had the strongest antioxidative capacity,followed by brown cells,and astaxanthin-deficient green cells.Although there was no significant increase in expression of protective enzymes,the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin,which quenched Oˉ2 before the protective enzymes could act.In green cells,astaxanthin is very low or absent;therefore,scavenging of ROS is inevitably reliant on antioxidative enzymes.Accordingly,in green cells,these enzymes play the leading role in scavenging ROS,and the expression of these enzymes is rapidly increased to reduce excessive ROS.However,because ROS were constantly increased in this study,the enhance enzyme activity in the green cells was not able to repair the ROS damage,leading to elevated MDA content.Of the four defensive enzymes measured in astaxanthin-deficient green cells,SOD eliminates Oˉ2,POD eliminates H2O2,which is a by-product of SOD activity,and APX and CAT are then initiated to scavenge excessive ROS.
基金supported by the National Natural Science Foundation of China(21706104)the Natural Science Foundation of Jiangsu Province(BK20150484)+1 种基金the China Postdoctoral Science Foundation(2015M570416)the financial support of the Research Foundation of Jiangsu University,China(14JDG148)~~
文摘In this work, an efficient AgVO3/MoS 2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessing the degradation of different organic pollutants under visible-light irradiation. The composite 3%-AgVO3/MoS 2 catalyst demonstrated a significantly enhanced photocatalytic activity compared to the pure compounds(AgVO3 and MoS2). The reason behind the excellent photocatalytic performance was the modification of MoS 2 by AgVO3 to facilitate O2 adsorption/activation. In addition, the composite catalyst facilitates the two-electron oxygen reduction reaction whereby H2O2 is generated on the surface of MoS 2 to produce additional reactive oxygen species(ROSs). ESR coupled with the POPHA fluorescence detection method and a free radical capture experiment were used to elucidate the mechanism of formation of the ROSs, including ·OH, ·O2- and H2O2. Furthermore, the generation of additional ROSs could accelerate electron consumption, leaving behind more holes for the oxidation of organic pollutants. A possible photocatalytic mechanism of the composite is also discussed.
基金Supported by the Guangdong Province Science & Technology Project(No.2010B020201014)the Guangdong Province Education Department(No.GCZX-A0909)+2 种基金the Guangdong Province Ocean and Fisheries Science & Technology Extension Project(No.20120980)the Guangdong Province Industry-University-Science Partnership Project(No.20110908)the Sci & Tech Plan of Huaiyin Normal University(No.00wh0031)
文摘A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.
基金supported by the Project of National Base for Talent Training in Basic Science(Grant No.J0830836)
文摘Realgar (As 4 S 4 ), as a mineral drug in traditional Chinese medicine, is currently used as the remedy for acute promyelocytic leukemia and has been proven to have relatively milder side effects as compared to the arsenolite (As 2 O 3 )-based drugs. We have previously demonstrated that realgar induces differentiation in HL-60 cells, and the differentiation is associated with serine/threonine protein phosphatases, MAPK signaling pathways, and mitochondrial transmembrane potential decrease. In this study, we further explore the roles of mitochondrial permeability transition pore and reactive oxygen species (ROS) in realgar-induced differentiation in HL-60 cells. The differentiation was preceded by marked changes in the cellular level of ROS, and could be enhanced by SB202190, a p38 MAPK inhibitor. In addition, the efficacy of realgar was suppressed by closing the MPTP with an inhibitor. Taken together, these findings indicate that the opening of MPTP and the alteration of ROS generation were involved in realgar-induced differentiation.
基金National Natural Science Foundation of China(G rant No.21171011 and 21671009)
文摘In the present study, we investigated the antiproliferative effect and the underlying mechanism of three antidiabetic vanadium compounds, metavanadate, VO(acac)2 and VO(ma)2, in human prostate cancer cells (PC-3 and DU-145). The results showed that vanadium compounds caused cell cycle arrest at G2/M phase evidenced by the elevation ofphosphorylated Cdc2 at tyr-15. Moreover, the results revealed that vanadium compounds induced reactive oxygen species (ROS) elevation in the two cell lines. The decreased level of Cdc25C could be rescued by the antioxidant, N-acetylcysteine, indicating that vanadium compounds-induced G2/M arrest was mediated by ROS. Additionally, the three vanadium compounds exerted more potent growth inhibitory effect on PC-3 cells which are PTEN-deficient and with higher level of basal ROS. It suggested that PTEN protein might serve as a biomarker for the selectivity of antitumor therapy using ROS-generating agents. Since the studied vanadium compounds have been shown the antidiabetic activities in the previous studies, there may be additional benefits in the potential application of vanadium compounds to suppress the growth of prostate cancer cells.
基金National Natural Science Foundation of China(Grant No.20637010)
文摘Gadolinium has been widely used as a contrast agent for magnetic resonance imaging in clinical practice. Recently, it was reported that gadolinium is involved in nephrogenic systemic fibrosis, although the exact mechanism by which gadolinium triggers nephrogenic systemic fibrosis remains unclear. In this study, we show that gadolinium chloride (GdC13) induced human umbilical vein endothelial cells (HUVECs) to migrate in Matrigel and tubulogenesis during wound healing. Chick chorioallantoic membrane assay confirmed that GdC13 stimulates angiogenesis. Under the optimal angiogenic concentration of GdC13 (1 0 ~tM), intracellular calcium concentration and reactive oxygen species generation were elevated. Moreover, western blotting results indicate that in cells treated with GdC13, Ca2+-dependent PKCa/132 was phosphorylated, and MAPKs pathways were also activated. Taken together, GdC13 has a potential effect on angiogenesis in HUVECs, and the possible mechanisms may involve oxidative stress and calcium-related signalin~ pathways.
基金National Natural Science Foundation of China(Grant No.20871008 and 21171011)
文摘In the present study, we investigated the role of reactive oxygen species(ROS) elevation induced by an anti-diabetic vanadium compound, vanadyl acetylacetonate(VO(acac)2), in the regulation of lipolysis and glucose metabolism using differentiated 3T3L1 adipocytes as a model system. By confocal laser scanning microscopy, we found that VO(acac)2 induced ROS generation under high glucose stimulation, and the pretreatment of NADPH oxidase inhibitors could significantly reduce the elevated ROS level. Meanwhile, the decreased phosphorylated levels of AKT and the two key modulators of lipolysis(HSL and perilipin) were observed by western blot analysis. We also found that the contents of glycerol release were further reduced as well. In addition, the levels of key regulatory proteins, AS160 and GSK3β, in glucose metabolism pathway were correspondingly reduced. These findings demonstrated that ROS induced by vanadium compounds could act as a metabolic signal to activate AKT pathway to inhibit lipolysis and promote glucose transport and glycogen synthesis rather than by direct action by themselves. Our study contributed to elucidate the anti-diabetic effects of vanadium compounds and provided a theoretical basis for the further development of new vanadium complexes in the prevention and therapeutics of diabetes.
基金supported by the National Natural Science Foundation of China (21722702 and 21872102)Tianjin Municipal Science and Technology Bureau (18YFZCSF00730, 18YFZCSF00770, 18ZXSZSF00230 and 19YFZCSF00740)。
文摘Advanced oxidation processes(AOPs) have been applied to address multiple environmental concerns including antibiotic resistance genes(ARGs). ARGs have shown an increasing threat to human health,and they are either harbored by antibiotic-resistant bacteria(ARB) or free in the environment.However, the control of ARGs has been substantially limited by their low concentration and the limited knowledge about their interfacial behavior. Herein, a novel AOP catalyst, Ag/TiO_(2)/graphene oxide(GO),combined with a polyvinylidene fluoride(PVDF) ultrafiltration membrane was designed with a synergistic interfacial adsorption and oxidation function to inactivate ARGs with high efficiency in both model solutions and in secondary wastewater effluent, especially when the residue concentration was low.Further analysis showed that the mineralization of bases and phosphodiesters mainly caused the inactivation of ARGs. Moreover, the interfacial adsorption and oxidation processes of ARGs were studied at the molecular level. The results showed that GO was rich in sp^(2) backbones and functional oxygen groups,which efficiently captured and enriched the ARGs via p-p interactions and hydrogen bonds. Therefore,the photogenerated active oxygen species attack the ARGs by partially overcoming the kinetic problems in this process. The Ag/Ti O2/GO catalyst was further combined with a PVDF membrane to test its potential in wastewater treatment applications. This work offers an efficient method and a corresponding material for the inactivation and mineralization of intra/extracellular ARGs. Moreover, the molecularlevel understanding of ARG behaviors on a solid–liquid interface will inspire further control strategies of ARGs in the future.
基金supported by the National Natural Science Foundation of China(51902121,52073110,22071072,51872107,21975090,and 21801086)the Fundamental Research Funds for the Central Universities of China(2662018QD011,2662018PY052,and 2662019PY023)the Natural Science Foundation of Hubei Province(2019CFB322)。
文摘Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis.
文摘The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal- containing catalysts, for example, environmental pollution by heavy metals and depletion of rare metal resources. Herein, an active and durable graphene carbocatalyst is presented for the carbocatalytic conversion of 4-nitrophenol to 4-aminophenol at ambient temperature. The carbocatalyst was prepared via a mild, water-based reaction between L-ascorbic acid (AA) and graphene oxide (GO) and did not involve any other reactants. During the structure and catalytic property optimization, a series of carbocatalysts were fabricated at various reaction temperatures and AA/GO ratios. Using several characterization techniques, detailed structural features of these carbocatalysts were identified. Possible active species and sites on the carbocatalysts were also identified such as certain oxygen-containing groups, the ~x-conjugated system, and graphene sheet edges. In addition, the synergistic effect between these active species and sites on the resulting catalytic activity is highlighted. Furthermore, we clarified the origin of the high stability and durability of the optimized carbocatalyst. The work presented here aids the design of high-performance carbocatalysts for hydrogenation reactions, and increases understanding of the structural and mechanistic aspects at the molecular level that lead to high catalyst activity and durability.
基金supported by the Innovative Experiment Project of Peking University Health Science Center, 2012
文摘Amavadin is a natural vanadium compound that accumulates to high level in poisonous Amanita mushrooms. Recently, amavadin was found to have potential therapeutic effect in cancer treatment. However, its toxicity and the possible mechanism of actions are still not clear. In this study, we investigated the toxic effects of amavadin on rat kidney mitochondria and the possible mechanism. We found that amavadin induced significantly permeability transition pore (PTP) opening in the mitochondria. Amavadin y inhibited the generation of reactive oxygen species (ROS) in succinate buffer, and at high concentration of 200 gM it increased the ROS generation in malate buffer. With the addition of rotenone, the ROS generation in malate buffer was strongly enhanced than that induced by amavadin alone, but remained unchanged in succinate buffer. Results from the present study suggest that amavadin act upon electron transport chain downstream of rotenone, and the ubiquinone binding site in complex I is the most possible binding site.
基金supported by the National Key Research and Development Program of China(2016YFB0701100)the National Natural Science Foundation of China(51771047,51525101 and 51971059)the Fundamental Research Funds for the Central Universities(N180204014)。
文摘Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts.
基金supported by the National Natural Science Foundation of China(21890753,21988101 to Dehui Deng,91853101 to Fangjun Wang,and 91845106 to Liang Yu)the Strategic PriorityResearch Program of the Chinese Academy of Sciences(XDB36030200 to Dehui Deng)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y201936 to Dehui Deng,Y201750 to Yangbo Hu)。
文摘Fully inactivating SARS-Co V-2, the virus causing coronavirus disease 2019, is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinfectants. Herein, we report an eco-friendly and efficient electrochemical strategy for inactivating the SARS-Co V-2 using in-situ formed nickel oxide hydroxide as anode catalyst and sodium carbonate as electrolyte. At a voltage of 5 V, the SARS-Co V-2 viruses can be rapidly inactivated with disinfection efficiency reaching 95% in only 30 s and 99.99% in 5 min. Mass spectrometry analysis and theoretical calculations indicate that the reactive oxygen species generated on the anode can oxidize the peptide chains and induce cleavage of the peptide backbone of the receptor binding domain of the SARS-Co V-2 spike glycoprotein, and thereby disables the virus. This strategy provides a sustainable and highly efficient approach for the disinfection of the SARS-CoV-2 viruliferous aerosols and wastewater.