In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate(ZJ0273) on barley growth and explored the potential to trigger growth recovery through the appl...In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate(ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids(BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273(100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency(Fv/Fm), quantum yield of photosystem II(ФPSII), net photosynthetic rate(Pn), and chlorophyll meter value(soil and plant analyzer development(SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species(ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase(ALS)-a keyD, enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants ? was studied using various concentrations of BCAAs(10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs(100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.展开更多
The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by g...The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by gel filtration chromatography, gas chromatography, fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the molecular weight of PP was about 23 kDa and PP was composed of D-Arabinose, D-Marmose, D-Glucose, and D-Galactose with a molar ratio of 1 : 7.79 : 70.32 : 7.05. FTIR and NMR spectra indicated that PP was the polysaccharide containing pyranose ring. Additionally, PP protected islets cells from streptozotocin (STZ) injury in vitro via increasing the levels of super-oxide dismutase (SOD) and malondialdehyde (MDA) and reducing the production of NO. The experiment of reverse transcriptase-polymerase chain reaction further proved that PP inhibited apoptosis via modulating the expression of Bax/Bcl-2 in STZ-damaged islet cells. In conclusion, PP could be explored as a novel agent for the treatment of diabetes mellitus.展开更多
The prevalence of mobile devices has spurred human mobility to be applied in mobile networking and communications by using network science, in which the temporal evolution of a network topology is of great importance ...The prevalence of mobile devices has spurred human mobility to be applied in mobile networking and communications by using network science, in which the temporal evolution of a network topology is of great importance for protocol design and performance analysis. This paper focuses on link generation in a temporal evolution network. Based on observations revealing the strong correlation between the connection patterns of different time periods, a link generation potential based on historical connections is proposed in this paper, aiming to provide a method for making topological predictions with less randomness. Using MIT Reality dataset, an evaluation of the accuracy of the proposed method was conducted. The experimental results demonstrate the proposal's adequacy in terms of its accuracy.展开更多
Molecular chain models of polyphenylene sulfide(PPS)with polymerization degrees ranging from 2 to 10 were constructed.The geometries of the models,representing various lengths of molecular chains,were optimized using ...Molecular chain models of polyphenylene sulfide(PPS)with polymerization degrees ranging from 2 to 10 were constructed.The geometries of the models,representing various lengths of molecular chains,were optimized using density functional theory.Subsequently,the activation energies and electronic properties of the reactions were computed.The findings indicated that the geometrical parameters of the PPS molecular chain model,with a polymerization degree exceeding 6,closely resemble actual PPS filters.Furthermore,the fluctuation in Mulliken charge of S atoms did not exceed 0.6%,and the variation in Mayer bond order was more consistent.The investigation revealed that the C-S bond and C-H bond are weaker links in the molecular chain,susceptible to disruption under harsh conditions.Analysis of the oxidation reaction between NO_(2)and PPS revealed the formation of a chemical bond between O atom in NO_(2)and S atom in PPS,emphasizing the influence of the electronic properties of PPS on the reaction.The activation energy for polyphenylene sulfide oxidation,with a polymerization degree greater than 6,remained constant at approximately 143 kJ·mol^(-1).Employing a molecular model of polyphenylene sulfide with a polymerization degree of 7 enhances the precision and reduces the computational workload in studying the oxidation reaction mechanism of PPS subjected to NO_(2).Selecting the appropriate length of the PPS molecular chain is crucial for investigating damage caused by flue gas components in PPS filter media and advancing filter media development further.展开更多
基金Project supported by the Zhejiang Science and Technology Department(Nos.LGN18C130007 and 2016C02050-8)the Jiangsu Collaborative Innovation Center for Modern Crop Productionthe Science Foundation of Zhejiang Sci-Tech University(No.14042216-Y),China
文摘In this study, we evaluated the effect of the herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino) benzoate(ZJ0273) on barley growth and explored the potential to trigger growth recovery through the application of branched-chain amino acids(BCAAs). Barley plants were foliar-sprayed with various concentrations of ZJ0273(100, 500, or 1000 mg/L) at the four-leaf stage. Increasing either the herbicide concentration or measurement time after herbicide treatment significantly impaired plant morphological parameters such as plant height and biomass, and affected physiological indexes, i.e. maximal photochemical efficiency(Fv/Fm), quantum yield of photosystem II(ФPSII), net photosynthetic rate(Pn), and chlorophyll meter value(soil and plant analyzer development(SPAD)). Cellular injury of herbicide-treated plants was also evidenced by increased levels of reactive oxygen species(ROS) and antioxidative enzyme activity. Elevated levels of herbicide significantly reduced the activity of acetolactate synthase(ALS)-a keyD, enzyme in the biosynthesis of BCAAs. In a separate experiment, growth recovery in herbicide-stressed barley plants ? was studied using various concentrations of BCAAs(10, 50, 100, and 200 mg/L). Increasing BCAA concentration in growth media significantly increased the biomass of herbicide-stressed barley seedlings, but had no significant effect on non-stressed plants. Further, BCAAs(100 mg/L) significantly down-regulated ROS and consequently antioxidant enzyme levels in herbicide-stressed plants. Our results showed that exogenous application of BCAAs could reverse the inhibitory effects of ZJ0273 by restoring protein biosynthesis in barley seedlings.
基金supported by the Natural Science Foundation Committee of China(NSFC 81202467)the Natural Science Foundation of Jiangsu Province in China(BK2012232)+2 种基金the Natural Science Research Project of Universities in Jiangsu Province of China(11KJB350004,06KJD310150,12KJB310012)the Natural Science Foundation of Nantong City of China(BK2011044)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by gel filtration chromatography, gas chromatography, fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the molecular weight of PP was about 23 kDa and PP was composed of D-Arabinose, D-Marmose, D-Glucose, and D-Galactose with a molar ratio of 1 : 7.79 : 70.32 : 7.05. FTIR and NMR spectra indicated that PP was the polysaccharide containing pyranose ring. Additionally, PP protected islets cells from streptozotocin (STZ) injury in vitro via increasing the levels of super-oxide dismutase (SOD) and malondialdehyde (MDA) and reducing the production of NO. The experiment of reverse transcriptase-polymerase chain reaction further proved that PP inhibited apoptosis via modulating the expression of Bax/Bcl-2 in STZ-damaged islet cells. In conclusion, PP could be explored as a novel agent for the treatment of diabetes mellitus.
基金supported by the National Natural Science Foundation of China(Grant No.61300183)the National Science Fund for Distinguished Young Scholars in China(Grant No.61425012)
文摘The prevalence of mobile devices has spurred human mobility to be applied in mobile networking and communications by using network science, in which the temporal evolution of a network topology is of great importance for protocol design and performance analysis. This paper focuses on link generation in a temporal evolution network. Based on observations revealing the strong correlation between the connection patterns of different time periods, a link generation potential based on historical connections is proposed in this paper, aiming to provide a method for making topological predictions with less randomness. Using MIT Reality dataset, an evaluation of the accuracy of the proposed method was conducted. The experimental results demonstrate the proposal's adequacy in terms of its accuracy.
基金supported by the China National Key R&D Program during the 13~(th)Five-year Plan Period(2018YFC0705300)the Fundamental Research Funds for the Central Universities(2232017A-09)
文摘Molecular chain models of polyphenylene sulfide(PPS)with polymerization degrees ranging from 2 to 10 were constructed.The geometries of the models,representing various lengths of molecular chains,were optimized using density functional theory.Subsequently,the activation energies and electronic properties of the reactions were computed.The findings indicated that the geometrical parameters of the PPS molecular chain model,with a polymerization degree exceeding 6,closely resemble actual PPS filters.Furthermore,the fluctuation in Mulliken charge of S atoms did not exceed 0.6%,and the variation in Mayer bond order was more consistent.The investigation revealed that the C-S bond and C-H bond are weaker links in the molecular chain,susceptible to disruption under harsh conditions.Analysis of the oxidation reaction between NO_(2)and PPS revealed the formation of a chemical bond between O atom in NO_(2)and S atom in PPS,emphasizing the influence of the electronic properties of PPS on the reaction.The activation energy for polyphenylene sulfide oxidation,with a polymerization degree greater than 6,remained constant at approximately 143 kJ·mol^(-1).Employing a molecular model of polyphenylene sulfide with a polymerization degree of 7 enhances the precision and reduces the computational workload in studying the oxidation reaction mechanism of PPS subjected to NO_(2).Selecting the appropriate length of the PPS molecular chain is crucial for investigating damage caused by flue gas components in PPS filter media and advancing filter media development further.