为保证城镇污水厂出水总磷达标排放,以A^2/O工艺为研究对象,采用生物除磷与前置化学除磷相耦合的方法,重点考察Al_2(SO_4)_3投加量对出水TP含量以及反应器内活性污泥性能的影响。结果表明,铝、磷摩尔比为1:1时,出水COD和TP、NH4^+-N、T...为保证城镇污水厂出水总磷达标排放,以A^2/O工艺为研究对象,采用生物除磷与前置化学除磷相耦合的方法,重点考察Al_2(SO_4)_3投加量对出水TP含量以及反应器内活性污泥性能的影响。结果表明,铝、磷摩尔比为1:1时,出水COD和TP、NH4^+-N、TN含量均达到了GB 18918-2002的一级A标准;铝、磷摩尔比为0.5:1时,出水TP的质量浓度则高达2.0 mg/L左右。铝、磷摩尔比为1:1时,好氧污泥SVI由投药前的87.4 m L/g降至74.2 m L/g,ζ电位由-4.73 m V降至-7.16 m V,氧吸收速率由3.185 mg/(g·min)升到3.462 mg/(g·min),胞外聚合物(EPS)的总量由66.25mg/g升到105.2 mg/g,蛋白质与多糖的质量比由5.23降至2.09,表明污泥活性、沉降性能、脱水性能增强。进行好氧污泥微生物群落结构分析,发现铝、磷摩尔比为1:1时微生物种属由投药前8种减为5种,微生物丰度降低,拟杆菌和绿弯菌的比例有所上升,与变形菌一起成为反应器内优势菌群。展开更多
考察了A2/O同步化学除磷工艺中Al2(SO4)3投加量对TP、COD、NH+4-N和TN的去除率与活性污泥性能的影响。结果表明,常温(18~32℃)条件下同步化学除磷最适宜的Al2(SO4)3投加量为铝、磷摩尔比0.5∶1,此条件下出水TP、COD、NH+4-N和TN浓度均...考察了A2/O同步化学除磷工艺中Al2(SO4)3投加量对TP、COD、NH+4-N和TN的去除率与活性污泥性能的影响。结果表明,常温(18~32℃)条件下同步化学除磷最适宜的Al2(SO4)3投加量为铝、磷摩尔比0.5∶1,此条件下出水TP、COD、NH+4-N和TN浓度均能达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。研究同时发现,Al2(SO4)3投加后,活性污泥的沉降性能和污泥活性均有所增强,其中SVI值由93.8 m L·g-1降至81.3 m L·g-1,Zeta电位由-5.5 m V降至-11.8 m V,胞外聚合物EPS含量增加了59.9%,蛋白质与多糖的比例由5.2降至2.1,比耗氧速率由4.2 mg·(g·min)-1升高到6.7 mg·(g·min)-1(以MLSS计)。微生物菌群结构分析结果表明,投药后污泥中微生物种类由投药前的8种减少为6种,硝化菌和反硝化菌比例有所降低,聚磷菌比例升高为6%。在低温(0~10℃)条件下,Al2(SO4)3投加量需有所增加,当铝、磷摩尔比为1∶1时,反应器出水TP、COD、TN和NH+4-N浓度方可达到一级A标准。展开更多
Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two o...Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.展开更多
In this study,the activated sludge model implemented in the BioWin software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters(Y p /acetic and the heterotrophic yield(...In this study,the activated sludge model implemented in the BioWin software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters(Y p /acetic and the heterotrophic yield(Y H)) required calibration. The value 0.42 was used for Yp /acetic in this study,while the default value of the BioWin software is 0.49,making it comparable with the default values of the corresponding parameter(yield of phosphorus release to substrate uptake(YPO4)) used in ASM2,ASM2 d,and ASM3 P,respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant,the possibility of wasting sludge from either the aeration tank or the secondary clarifier,the construction of a new oxidation ditch,and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However,sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore,it is recommended that the design of wastewater treatment plants(WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary,resulting in substantial reductions in operating costs.展开更多
Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability....Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.展开更多
Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under d...Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.展开更多
A recent study conducted on the four activated systems serving the surrounding communities in the Northern Gauteng revealed the failure of three of these wastewater treatment plants to remove enteric pathogenic bacter...A recent study conducted on the four activated systems serving the surrounding communities in the Northern Gauteng revealed the failure of three of these wastewater treatment plants to remove enteric pathogenic bacteria and protozoan parasites such as Cryptosporidium and Giardia spp. To determine the factors involved in the inadequate performance of the plants, the following parameters were considered: the design characteristic of the plants, the microbiological structure and the physical characteristics of the plants. The results revealed that higher than optimal influent loadings and inadequate aeration systems, observed in Baviaanspoort, Refilwe and Rayton Water Care Works (WCW) increased the composition of filamentous bacteria in flocs and decreased the diversity of protozoan species in the sludge. Sequentially, these resulted in the poor settling properties of the sludge at these plants. However, Zeekoegat WCW showed optimum influent loads and adequate aeration systems. This maintained balance in the microbial community, resulting in good clarification of the sludge.展开更多
文摘为保证城镇污水厂出水总磷达标排放,以A^2/O工艺为研究对象,采用生物除磷与前置化学除磷相耦合的方法,重点考察Al_2(SO_4)_3投加量对出水TP含量以及反应器内活性污泥性能的影响。结果表明,铝、磷摩尔比为1:1时,出水COD和TP、NH4^+-N、TN含量均达到了GB 18918-2002的一级A标准;铝、磷摩尔比为0.5:1时,出水TP的质量浓度则高达2.0 mg/L左右。铝、磷摩尔比为1:1时,好氧污泥SVI由投药前的87.4 m L/g降至74.2 m L/g,ζ电位由-4.73 m V降至-7.16 m V,氧吸收速率由3.185 mg/(g·min)升到3.462 mg/(g·min),胞外聚合物(EPS)的总量由66.25mg/g升到105.2 mg/g,蛋白质与多糖的质量比由5.23降至2.09,表明污泥活性、沉降性能、脱水性能增强。进行好氧污泥微生物群落结构分析,发现铝、磷摩尔比为1:1时微生物种属由投药前8种减为5种,微生物丰度降低,拟杆菌和绿弯菌的比例有所上升,与变形菌一起成为反应器内优势菌群。
文摘考察了A2/O同步化学除磷工艺中Al2(SO4)3投加量对TP、COD、NH+4-N和TN的去除率与活性污泥性能的影响。结果表明,常温(18~32℃)条件下同步化学除磷最适宜的Al2(SO4)3投加量为铝、磷摩尔比0.5∶1,此条件下出水TP、COD、NH+4-N和TN浓度均能达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。研究同时发现,Al2(SO4)3投加后,活性污泥的沉降性能和污泥活性均有所增强,其中SVI值由93.8 m L·g-1降至81.3 m L·g-1,Zeta电位由-5.5 m V降至-11.8 m V,胞外聚合物EPS含量增加了59.9%,蛋白质与多糖的比例由5.2降至2.1,比耗氧速率由4.2 mg·(g·min)-1升高到6.7 mg·(g·min)-1(以MLSS计)。微生物菌群结构分析结果表明,投药后污泥中微生物种类由投药前的8种减少为6种,硝化菌和反硝化菌比例有所降低,聚磷菌比例升高为6%。在低温(0~10℃)条件下,Al2(SO4)3投加量需有所增加,当铝、磷摩尔比为1∶1时,反应器出水TP、COD、TN和NH+4-N浓度方可达到一级A标准。
文摘Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
基金Supported by the College of Scientific Innovation Significant Cultivation Fund Financing Projects(No.708047)the Key Special Program for Pollution Control(No.2012ZX07101-003)
文摘In this study,the activated sludge model implemented in the BioWin software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters(Y p /acetic and the heterotrophic yield(Y H)) required calibration. The value 0.42 was used for Yp /acetic in this study,while the default value of the BioWin software is 0.49,making it comparable with the default values of the corresponding parameter(yield of phosphorus release to substrate uptake(YPO4)) used in ASM2,ASM2 d,and ASM3 P,respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant,the possibility of wasting sludge from either the aeration tank or the secondary clarifier,the construction of a new oxidation ditch,and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However,sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore,it is recommended that the design of wastewater treatment plants(WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary,resulting in substantial reductions in operating costs.
基金Supported by the Spanish Ministry of Science and Innovation,under the project FOXMORE(CTM2006-05114)
文摘Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.
文摘Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.
文摘A recent study conducted on the four activated systems serving the surrounding communities in the Northern Gauteng revealed the failure of three of these wastewater treatment plants to remove enteric pathogenic bacteria and protozoan parasites such as Cryptosporidium and Giardia spp. To determine the factors involved in the inadequate performance of the plants, the following parameters were considered: the design characteristic of the plants, the microbiological structure and the physical characteristics of the plants. The results revealed that higher than optimal influent loadings and inadequate aeration systems, observed in Baviaanspoort, Refilwe and Rayton Water Care Works (WCW) increased the composition of filamentous bacteria in flocs and decreased the diversity of protozoan species in the sludge. Sequentially, these resulted in the poor settling properties of the sludge at these plants. However, Zeekoegat WCW showed optimum influent loads and adequate aeration systems. This maintained balance in the microbial community, resulting in good clarification of the sludge.