Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent ...Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.展开更多
We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials(Cu-BTC, ZIF-8, COP-4 and activated carbon(AC)). Results indicate that among the four materia...We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials(Cu-BTC, ZIF-8, COP-4 and activated carbon(AC)). Results indicate that among the four materials, Cu-BTC not only shows the highest retention volume per gram(V_g=788 m L g^(-1), which is 1.8 times of activated carbon(436 m L g^(-1))) under flowing condition, but also can separate 350 ppm Xe from 35 ppm Kr mixture in air with a high Xe/Kr selectivity of 8.6 at room temperature and 200 k Pa, due to its suitable pore morphology, open metal sites, small side pockets in the framework. Moreover, the Cu-BTC also performs well on individual separation of Xe, Kr, CO_2 from five-component gas mixture(Xe:Kr:CO_2:Ar:N_2= 1:1:1:1:0.5, V/V) and has the longest retention time for Xe(20 min) in gas chromatographic separation, suggesting that it is a good candidate for potential applications as polymeric sieves.展开更多
基金the Iran Nanotechnology Initiative Council for the financial and other supports
文摘Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.
基金supported by the “Radiochemistry 909 Program” in China Academy of Engineering Physics and the National Natural Science Foundation of China (91334203, 21274011)
文摘We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials(Cu-BTC, ZIF-8, COP-4 and activated carbon(AC)). Results indicate that among the four materials, Cu-BTC not only shows the highest retention volume per gram(V_g=788 m L g^(-1), which is 1.8 times of activated carbon(436 m L g^(-1))) under flowing condition, but also can separate 350 ppm Xe from 35 ppm Kr mixture in air with a high Xe/Kr selectivity of 8.6 at room temperature and 200 k Pa, due to its suitable pore morphology, open metal sites, small side pockets in the framework. Moreover, the Cu-BTC also performs well on individual separation of Xe, Kr, CO_2 from five-component gas mixture(Xe:Kr:CO_2:Ar:N_2= 1:1:1:1:0.5, V/V) and has the longest retention time for Xe(20 min) in gas chromatographic separation, suggesting that it is a good candidate for potential applications as polymeric sieves.